Solveeit Logo

Question

Question: Let \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]. Find the value of \[\dfrac{dy}{dx}\]....

Let y=cos hx=ex+ex2y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}. Find the value of dydx\dfrac{dy}{dx}.

Explanation

Solution

Hint: The derivative of the function eax{{e}^{ax}} is given as d(eax)dx=a.eax\dfrac{d({{e}^{ax}})}{dx}=a.{{e}^{ax}} .

We are given y=cos hx=ex+ex2y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}, which is a hyperbolic function , and we need to find the derivative of the given function .
We will differentiate the given hyperbolic function with respect to xx.
On differentiating the given hyperbolic function with respect to xx, we get
dydx=ddx(cos hx)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \cos \text{ }hx \right)
=ddx(ex+ex2)=\dfrac{d}{dx}\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)
=ddx(ex2)+ddx(ex2)..........=\dfrac{d}{dx}(\dfrac{{{e}^{x}}}{2})+\dfrac{d}{dx}(\dfrac{{{e}^{-x}}}{2})..........equation(1)(1).
Now , to find the derivative of the function , first we need to find the derivative of ex{{e}^{x}}and ex{{e}^{-x}} with respect to xx .
We already know that the derivative of eax{{e}^{ax}}is ddxeax=a.eax\dfrac{d}{dx}{{e}^{ax}}=a.{{e}^{ax}}
So , the derivative of ex{{e}^{-x}} with respect to xxcan be calculated as ddxex=1.ex=ex\dfrac{d}{dx}{{e}^{-x}}=-1.{{e}^{-x}}=-{{e}^{-x}}.
And , the derivative of ex{{e}^{x}} with respect to xx can be calculated as ddxex=1.ex=ex\dfrac{d}{dx}{{e}^{x}}=1.{{e}^{x}}={{e}^{x}}
Now , to evaluate the derivative of the function , we will substitute the values of ddxex\dfrac{d}{dx}{{e}^{-x}} and ddxex\dfrac{d}{dx}{{e}^{x}} in equation(1)(1).
On substituting the values of ddxex\dfrac{d}{dx}{{e}^{-x}} and ddxex\dfrac{d}{dx}{{e}^{x}} in equation(1)(1), we get
dydx=exex2\dfrac{dy}{dx}=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}
But we know that exex2\dfrac{{{e}^{x}}-{{e}^{-x}}}{2} is the expansion of a hyperbolic function , sinhx\sinh x.
So , we can write the value of the derivative of the function yy as dydx=sinhx\dfrac{dy}{dx}=\sinh x.
Hence , the value of the derivative of the hyperbolic function y=cos hx=ex+ex2y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2} is given as dydx=sinhx\dfrac{dy}{dx}=\sinh x.

Note: Remember the expansion of sin hx\sin \text{ }hx is exex2\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}. Also remember that ddx(cos hx)=sin hx\dfrac{d}{dx}\left( \text{cos }hx \right)=\sin \text{ }hxand not sinhx-\sinh x . Students generally get confused and end up getting a wrong answer . Hence , such mistakes should be avoided .