Solveeit Logo

Question

Differential Equations Question on Differential Equations

Let yc:R(0,)y_c:\R \rightarrow(0,\infin) be the solution of the Bernoulli’s equation
dydxy+y3=0,       y(0)=c>0.\frac{dy}{dx}-y+y^3=0,\ \ \ \ \ \ \ y(0)=c \gt 0.
Then, for every 𝑐 > 0, which one of the following is true ?

A

limxyc(x)=0\lim\limits_{x\rightarrow \infin}y_c(x)=0

B

limxyc(x)=1\lim\limits_{x\rightarrow \infin}y_c(x)=1

C

limxyc(x)=e\lim\limits_{x\rightarrow \infin}y_c(x)=e

D

limxyc(x)\lim\limits_{x\rightarrow \infin}y_c(x) does not exist

Answer

limxyc(x)=1\lim\limits_{x\rightarrow \infin}y_c(x)=1

Explanation

Solution

The correct option is (B) : limxyc(x)=1\lim\limits_{x\rightarrow \infin}y_c(x)=1.