Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let y be an implicit function of x defined by x2x2xxcoty1=0x^{2x} - 2x^x \, \cot \, y - 1= 0. Then y'(1) equals

A

1

B

log 2

C

- log 2

D

-1

Answer

-1

Explanation

Solution

x2x2xxcoty1=0x^{2x} - 2x^{x} \cot y-1 = 0 2coty=xxxx \Rightarrow 2 \cot y = x^{x } - x^{-x} 2coty=u1u \Rightarrow 2 \cot y =u - \frac{1}{u} where u=xxu =x^{x} Differentiating both sides with respect to x, we get 2cosec2ydydx=(1+1u2)dudx-2 \, cosec^{2} \,y \,\frac{dy}{dx} = \left(1+ \frac{1}{u^{2}}\right) \frac{du}{dx} where u=xxlogu=xlogxu = x^{x} \Rightarrow \log u = x \log x 1ududx=1+logx\Rightarrow \, \frac{1}{u} \frac{du}{dx} = 1 + \log x dudx=xx(1+logx)\Rightarrow \frac{du}{dx } = x^{x} \left(1+\log x\right) \therefore We get 2cosec2ydydx=(1+x2x).xx(1+logx)- 2\, cosec^{2} \,y \,\frac{dy}{dx} = \left(1+x^{-2x}\right).x^{x} \left(1+ \log x\right) dydx=(xx+xx)(1+logx)2(1+cot2y)\Rightarrow \frac{dy}{dx} = \frac{\left(x^{x} + x^{-x}\right)\left(1+ \log x\right)}{-2\left(1+\cot^{2}y\right)} ...(i) Now when x=1,x2x2xxcoty1=0x = 1, x^{2x} - 2x^x \, \cot \, y - 1 = 0, gives 12coty1=01 - 2 \, \cot \, y - 1 = 0 coty=0\Rightarrow \, \cot \, y = 0 \therefore From equation (i), at x = 1 and coty=0\cot \, y = 0 , we get y(1)=(1+1)(1+0)2(1+0)=1y' \left(1\right) = \frac{\left(1+1\right)\left(1+0\right)}{-2\left(1+0\right)}=-1