Question
Mathematics Question on Continuity and differentiability
Let y be an implicit function of x defined by x2x−2xxcoty−1=0. Then y'(1) equals
A
1
B
log 2
C
- log 2
D
-1
Answer
-1
Explanation
Solution
x2x−2xxcoty−1=0 ⇒2coty=xx−x−x ⇒2coty=u−u1 where u=xx Differentiating both sides with respect to x, we get −2cosec2ydxdy=(1+u21)dxdu where u=xx⇒logu=xlogx ⇒u1dxdu=1+logx ⇒dxdu=xx(1+logx) ∴ We get −2cosec2ydxdy=(1+x−2x).xx(1+logx) ⇒dxdy=−2(1+cot2y)(xx+x−x)(1+logx) ...(i) Now when x=1,x2x−2xxcoty−1=0, gives 1−2coty−1=0 ⇒coty=0 ∴ From equation (i), at x = 1 and coty=0 , we get y′(1)=−2(1+0)(1+1)(1+0)=−1