Solveeit Logo

Question

Question: Let \[y\] be an implicit function of \[x\] defined by \[{{x}^{2x}}-2{{x}^{x}}\cot y-1=0\] . Then, \[...

Let yy be an implicit function of xx defined by x2x2xxcoty1=0{{x}^{2x}}-2{{x}^{x}}\cot y-1=0 . Then, y(1){{y}^{'}}(1) equals:
(a) 11
(b) log2\log 2
(c) log2-\log 2
(d) 1-1

Explanation

Solution

Hint:The given problem is related to differentiation of implicit function. Use the following formulae to get the required answer: d(cotx)dx=cosec2x\dfrac{d(\cot x)}{dx}=-\cos e{{c}^{2}}x and d(xx)dx=xx(1+logx)\dfrac{d({{x}^{x}})}{dx}={{x}^{x}}(1+\log x) .

Complete step-by-step answer:
The given expression is x2x2xxcoty1=0{{x}^{2x}}-2{{x}^{x}}\cot y-1=0 .
The given expression can be rewritten as (xx)22xxcoty1=0{{({{x}^{x}})}^{2}}-2{{x}^{x}}\cot y-1=0 .
Clearly , we can see that it is an implicit function . Hence , we can represent it as f(x,y)(xx)22xxcoty1=0f(x,y)\equiv {{({{x}^{x}})}^{2}}-2{{x}^{x}}\cot y-1=0.
Now , we will differentiate f(x,y)f(x,y) with respect to xx .
f(x,y)f(x,y) is an implicit function. So , to differentiate it , we will apply chain rule of differentiation . According to the chain rule of differentiation , if R(x,y)R(x,y) is an implicit function , then the derivative of R(x,y)R(x,y) with respect to xx is given by dRdx=Rx+Ry×dydx\dfrac{dR}{dx}=\dfrac{\partial R}{\partial x}+\dfrac{\partial R}{\partial y}\times \dfrac{dy}{dx} .
Now , we will differentiate the function with respect to xx . So, on differentiating we get ,
2(xx).ddx(xx)coty.x2(xx)(2xxy(coty)×dydx)=0.........2({{x}^{x}}).\dfrac{d}{dx}({{x}^{x}})-\cot y.\dfrac{\partial }{\partial x}2({{x}^{x}})-(2{{x}^{x}}\dfrac{\partial }{\partial y}(\cot y)\times \dfrac{dy}{dx})=0......... equation (1)(1)
Now, we have to find the derivative of xx{{x}^{x}} with respect to xx .
Let z = xx{{x}^{x}} . Since, the function is in exponent form, let’s apply logarithms to convert it into product form. So, log z = log (xx)\left( {{x}^{x}} \right) . We know, logab=bloga\log {{a}^{b}}=b\log a.
logz=xlogx\Rightarrow \log z=x\log x . Now, to differentiate with respect to x, we will use product rule of differentiation, which is given as ddx(uv)=uv+uv\dfrac{d}{dx}\left( uv \right)=uv'+u'v , in the right-hand side.
On differentiating with respect to x, we get:
1zdzdx=x×ddx(logx)+logx\dfrac{1}{z}\dfrac{dz}{dx}=x\times \dfrac{d}{dx}\left( \log x \right)+\log x
1zdzdx=x×1x+logx\Rightarrow \dfrac{1}{z}\dfrac{dz}{dx}=x\times \dfrac{1}{x}+\log x
1zdzdx=1+logx\Rightarrow \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x
We substituted z=xxz={{x}^{x}} .
ddxxx=xx(1+logx)\Rightarrow \dfrac{d}{dx}{{x}^{x}}={{x}^{x}}\left( 1+\log x \right)
Now , we will substitute the value of ddx(xx)\dfrac{d}{dx}({{x}^{x}}) in equation (1)(1) .
On substituting the value of ddx(xx)\dfrac{d}{dx}({{x}^{x}}) in equation (1)(1) , we get , 2xx[1+logx]xxcoty2xx(1+logx)2xx(cosec2y)dydx=02{{x}^{x}}[1+\log x]{{x}^{x}}-\cot y2{{x}^{x}}(1+\log x)-2{{x}^{x}}(-\cos e{{c}^{2}}y)\dfrac{dy}{dx}=0
2x2x(1+logx)coty2xx(1+logx)+2xxcosec2ydydx=0\Rightarrow 2{{x}^{2x}}(1+\log x)-\cot y2{{x}^{x}}(1+\log x)+2{{x}^{x}}\cos e{{c}^{2}}y\dfrac{dy}{dx}=0
2xx(xx(1+logx)coty(1+logx))+2xxcosec2ydydx=0\Rightarrow 2{{x}^{x}}({{x}^{x}}(1+\log x)-\cot y(1+\log x))+2{{x}^{x}}\cos e{{c}^{2}}y\dfrac{dy}{dx}=0
dydx=2xx(1+logx)(cotyxx)2xxcosec2y\Rightarrow \dfrac{dy}{dx}=\dfrac{2{{x}^{x}}(1+\log x)(\cot y-{{x}^{x}})}{2{{x}^{x}}\cos e{{c}^{2}}y}
Now , we will find the value of yy at x=1x=1 .
We are given x2x2xxcoty1=0.........{{x}^{2x}}-2{{x}^{x}}\cot y-1=0......... equation (2)(2) .
To find the value of yy at x=1x=1 , we will substitute x=1x=1 in equation (2)(2) .
On substituting x=1x=1 in equation (2)(2) , we get ,
12.12.11coty1=0{{1}^{2.1}}-{{2.1}^{1}}\cot y-1=0

& \Rightarrow -2\cot y=0 \\\ & \Rightarrow \cot y=0 \\\ & \Rightarrow y=\dfrac{\pi }{2} \\\ \end{aligned}$$ So , at $$x=1$$ , we can see the value of $$y=\dfrac{\pi }{2}$$ . Now , substituting $$x=1$$ and $$y=\dfrac{\pi }{2}$$ in the value of $$\dfrac{dy}{dx}$$ we get , $$\dfrac{dy}{dx}=\dfrac{2(1+0)(0-1)}{2\times 1}=\dfrac{-2}{2}=-1$$ . Hence , the value of the derivative of $${{x}^{2x}}-2{{x}^{x}}\cot y-1=0$$ at $$x=1$$ is equal to $$-1$$ . Hence, the correct option is option(d). Note: Substitutions should be done carefully, because any mistake during substitution will lead to wrong answers. Also, the value of the derivative of ${{x}^{x}}$ with respect to $x$ should be remembered as a formula. It is very helpful while solving difficult problems.