Solveeit Logo

Question

Question: Let y = 4x<sup>2</sup> and \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{16} = 1\) intersect iff...

Let y = 4x2 and x2a2y216=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{16} = 1 intersect iff

A

|a| ≤12\frac{1}{\sqrt{2}}

B

a < - 12\frac{1}{\sqrt{2}}

C

a> - 12\frac{1}{\sqrt{2}}

D

None of these

Answer

|a| ≤12\frac{1}{\sqrt{2}}

Explanation

Solution

y = 4x2 and 14\frac{1}{4}y = x2

using 14a2yy216=1\frac{1}{4a^{2}}y - \frac{y^{2}}{16} = 1

⇒ 4y – a2y2 = 16a2

⇒ a2y2 – 4y + 16a2 = 0

⇒ D ≥ 0 for intersection of two curves

⇒ 16 – 4a2 (16a2) ≥ 0

⇒ 1 – 4a4 ≥ 0

(2a2)21\left( \sqrt{2}a^{2} \right)^{2} \leq 1

2a1|\sqrt{2}a| \leq 1

12a12- \frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}