Question
Question: Let x<sup>2</sup> ¹ np –1, n Î N, then \(\int_{}^{}{x\sqrt{\frac{2\sin(x^{2} + 1)–\sin 2(x^{2} + 1)}...
Let x2 ¹ np –1, n Î N, then ∫x2sin(x2+1)+sin2(x2+1)2sin(x2+1)–sin2(x2+1)dx
is equal to:
A
ln21sec(x2+1) + C
B
lnsec(2x2+1) + C
C
21ln |sec(x2 + 1)| + C
D
21ln sec(x2+1)2 + C
Answer
lnsec(2x2+1) + C
Explanation
Solution
= 21 ∫2x2sin(x2+1)+sin2(x2+1)2sin(x2+1)–sin2(x2+1)dx
x2 + 1 = t ̃ 2x dx = dt
I = 21 ∫2sint+sin2t2sint–sin2tdt
= 21 ∫2+2cost2–2costdt = 21 ∫tan2tdt
= 21 21ln∣sec2t∣ + c = ln sec(2x2+1) + c