Solveeit Logo

Question

Question: Let x<sup>2</sup> ¹ np –1, n Î N, then \(\int_{}^{}{x\sqrt{\frac{2\sin(x^{2} + 1)–\sin 2(x^{2} + 1)}...

Let x2 ¹ np –1, n Î N, then x2sin(x2+1)sin2(x2+1)2sin(x2+1)+sin2(x2+1)\int_{}^{}{x\sqrt{\frac{2\sin(x^{2} + 1)–\sin 2(x^{2} + 1)}{2\sin(x^{2} + 1) + \sin 2(x^{2} + 1)}}}dx

is equal to:

A

ln12sec(x2+1)\left| \frac{1}{2}\sec(x^{2} + 1) \right| + C

B

lnsec(x2+12)\left| \sec\left( \frac{x^{2} + 1}{2} \right) \right| + C

C

12\frac{1}{2}ln |sec(x2 + 1)| + C

D

12\frac{1}{2}ln 2sec(x2+1)\left| \frac{2}{\sec(x^{2} + 1)} \right| + C

Answer

lnsec(x2+12)\left| \sec\left( \frac{x^{2} + 1}{2} \right) \right| + C

Explanation

Solution

= 12\frac { 1 } { 2 } 2x2sin(x2+1)sin2(x2+1)2sin(x2+1)+sin2(x2+1)\int_{}^{}{2x\sqrt{\frac{2\sin(x^{2} + 1)–\sin 2(x^{2} + 1)}{2\sin(x^{2} + 1) + \sin 2(x^{2} + 1)}}}dx

x2 + 1 = t ̃ 2x dx = dt

I = 12\frac { 1 } { 2 } 2sintsin2t2sint+sin2t\int_{}^{}\sqrt{\frac{2\sin t–\sin 2t}{2\sin t + \sin 2t}}dt

= 12\frac { 1 } { 2 } 22cost2+2cost\int_{}^{}\sqrt{\frac{2–2\cos t}{2 + 2\cos t}}dt = 12\frac{1}{2} tant2\int_{}^{}{\tan\frac{t}{2}}dt

= 12\frac { 1 } { 2 } lnsect212\frac{\mathcal{l}n\left| \sec\frac{t}{2} \right|}{\frac{1}{2}} + c = ln sec(x2+12)\left| \sec\left( \frac{x^{2} + 1}{2} \right) \right| + c