Solveeit Logo

Question

Question: Let \(x_{1},x_{2},x_{3},.....,x_{n}\) be the rank of n individuals according to character A and \(y_...

Let x1,x2,x3,.....,xnx_{1},x_{2},x_{3},.....,x_{n} be the rank of n individuals according to character A and y1,y2,......,yny_{1},y_{2},......,y_{n} the ranks of same individuals according to other character B such that xi+yi=n+1x_{i} + y_{i} = n + 1 for i=1,2,3,.....,ni = 1,2,3,.....,n. Then the coefficient of rank correlation between the characters A and B is

A

1

B

0

C

– 1

D

None

Answer

– 1

Explanation

Solution

xi+yi=n+1x_{i} + y_{i} = n + 1 for all i=1,2,3,.....,ni = 1,2,3,.....,n

Let xiyi=dix_{i} - y_{i} = d_{i}. Then, 2xi=n+1+di2x_{i} = n + 1 + d_{i}di=2xi(n+1)d_{i} = 2x_{i} - (n + 1)

\therefore i=1ndi2=i=1n[2xi(n+1)]2\sum_{i = 1}^{n}{d_{i}}^{2} = \sum_{i = 1}^{n}{\lbrack 2x_{i} - (n + 1)\rbrack^{2}} = i=1n[4xi2+(n+1)24xi(n+1)]\sum_{i = 1}^{n}{\lbrack 4x_{i}^{2} + (n + 1)^{2} - 4x_{i}(n + 1)\rbrack}

i=1ndi2=4i=1nxi2+(n)(n+1)24(n+1)i=1nxi\sum_{i = 1}^{n}{d_{i}}^{2} = 4\sum_{i = 1}^{n}{{x_{i}}^{2} + (n)(n + 1)^{2} - 4(n + 1)\sum_{i = 1}^{n}x_{i}}

= 4n(n+1)(2n+1)6+(n)(n+1)24(n+1)n(n+1)24 \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 } + ( n ) ( n + 1 ) ^ { 2 } - 4 ( n + 1 ) \frac { n ( n + 1 ) } { 2 } i=1ndi2=n(n21)3\sum_{i = 1}^{n}{d_{i}}^{2} = \frac{n(n^{2} - 1)}{3}

\therefore r=16di2n(n21)=16(n)(n21)3(n)(n21)r = 1 - \frac{6\sum_{}^{}d_{i}^{2}}{n(n^{2} - 1)} = 1 - \frac{6(n)(n^{2} - 1)}{3(n)(n^{2} - 1)} i.e., r=1r = - 1.