Solveeit Logo

Question

Question: Let $x_1, x_2, x_3, x_4$ be in a geometric progression. If 2, 7, 9, 5 are subtracted respectively fr...

Let x1,x2,x3,x4x_1, x_2, x_3, x_4 be in a geometric progression. If 2, 7, 9, 5 are subtracted respectively from x1,x2,x3,x4x_1, x_2, x_3, x_4 then the resulting numbers are in an arithmetic progression. Then the value of 124(x1x2x3x4)\frac{1}{24}(x_1x_2x_3x_4) is:

A

216

B

108

C

432

D

5184

Answer

216

Explanation

Solution

Let the geometric progression be x1=ax_1 = a, x2=arx_2 = ar, x3=ar2x_3 = ar^2, and x4=ar3x_4 = ar^3. When 2, 7, 9, and 5 are subtracted from x1,x2,x3,x4x_1, x_2, x_3, x_4 respectively, the resulting numbers are a2a-2, ar7ar-7, ar29ar^2-9, and ar35ar^3-5. These numbers form an arithmetic progression. Therefore, the difference between consecutive terms is constant: (ar7)(a2)=(ar29)(ar7)(ar-7) - (a-2) = (ar^2-9) - (ar-7) ara5=ar2ar2ar - a - 5 = ar^2 - ar - 2 ar22ar+a+3=0ar^2 - 2ar + a + 3 = 0 a(r22r+1)+3=0a(r^2 - 2r + 1) + 3 = 0 a(r1)2=3()a(r-1)^2 = -3 \quad (*)

Also, (ar29)(ar7)=(ar35)(ar29)(ar^2-9) - (ar-7) = (ar^3-5) - (ar^2-9) ar2ar2=ar3ar2+4ar^2 - ar - 2 = ar^3 - ar^2 + 4 ar32ar2+ar+6=0ar^3 - 2ar^2 + ar + 6 = 0 ar(r22r+1)+6=0ar(r^2 - 2r + 1) + 6 = 0 ar(r1)2=6()ar(r-1)^2 = -6 \quad (**)

Substitute the value of a(r1)2a(r-1)^2 from ()(*) into ()(**): r[a(r1)2]=6r \cdot [a(r-1)^2] = -6 r(3)=6r \cdot (-3) = -6 3r=6-3r = -6 r=2r = 2

Substitute r=2r=2 back into ()(*): a(21)2=3a(2-1)^2 = -3 a(1)2=3a(1)^2 = -3 a=3a = -3

The terms of the geometric progression are x1=3x_1 = -3, x2=(3)(2)=6x_2 = (-3)(2) = -6, x3=(3)(22)=12x_3 = (-3)(2^2) = -12, x4=(3)(23)=24x_4 = (-3)(2^3) = -24.

The product x1x2x3x4=aarar2ar3=a4r6x_1x_2x_3x_4 = a \cdot ar \cdot ar^2 \cdot ar^3 = a^4r^6. x1x2x3x4=(3)4(2)6=81×64=5184x_1x_2x_3x_4 = (-3)^4 (2)^6 = 81 \times 64 = 5184.

The value to be found is 124(x1x2x3x4)\frac{1}{24}(x_1x_2x_3x_4): 124(5184)=518424=216\frac{1}{24}(5184) = \frac{5184}{24} = 216.