Solveeit Logo

Question

Question: Let $x_1, x_2, x_3, ....., x_{2018}$ be positive real numbers satisfying the condition $\frac{1}{1+...

Let x1,x2,x3,.....,x2018x_1, x_2, x_3, ....., x_{2018} be positive real numbers satisfying the condition

11+x1+11+x2+....+11+x2018=1\frac{1}{1+x_1} + \frac{1}{1+x_2} +....+ \frac{1}{1+x_{2018}} = 1. Then the minimum value of r=12018xr\prod_{r=1}^{2018} x_r is equals to (k)k+1(k)^{k+1}, where k is equal to

Answer

2017

Explanation

Solution

Let n=2018n = 2018. The given condition is r=1n11+xr=1\sum_{r=1}^{n} \frac{1}{1+x_r} = 1, where xr>0x_r > 0.

Let yr=11+xry_r = \frac{1}{1+x_r}.

Since xr>0x_r > 0, we have 1+xr>11+x_r > 1, which implies 0<yr<10 < y_r < 1.

The given condition becomes r=1nyr=1\sum_{r=1}^{n} y_r = 1.

We need to find the minimum value of the product r=1nxr\prod_{r=1}^{n} x_r.

First, express xrx_r in terms of yry_r:

yr=11+xr    1+xr=1yr    xr=1yr1=1yryry_r = \frac{1}{1+x_r} \implies 1+x_r = \frac{1}{y_r} \implies x_r = \frac{1}{y_r} - 1 = \frac{1-y_r}{y_r}.

Now, substitute this into the product:

P=r=1nxr=r=1n1yryrP = \prod_{r=1}^{n} x_r = \prod_{r=1}^{n} \frac{1-y_r}{y_r}.

Since i=1nyi=1\sum_{i=1}^{n} y_i = 1, we can write 1yr=(i=1nyi)yr=iryi1-y_r = \left(\sum_{i=1}^{n} y_i\right) - y_r = \sum_{i \neq r} y_i.

So, the product becomes:

P=r=1niryiyr=(y2+y3+...+yny1)(y1+y3+...+yny2)...(y1+y2+...+yn1yn)P = \prod_{r=1}^{n} \frac{\sum_{i \neq r} y_i}{y_r} = \left(\frac{y_2+y_3+...+y_n}{y_1}\right) \left(\frac{y_1+y_3+...+y_n}{y_2}\right) ... \left(\frac{y_1+y_2+...+y_{n-1}}{y_n}\right).

Now, we apply the AM-GM inequality to the sum in each numerator. For any rr, the sum iryi\sum_{i \neq r} y_i consists of n1n-1 positive terms.

By AM-GM inequality:

iryi(n1)(iryi)1n1\sum_{i \neq r} y_i \ge (n-1) \left(\prod_{i \neq r} y_i\right)^{\frac{1}{n-1}}.

Applying this to each term in the product PP:

Pr=1n(n1)(iryi)1n1yrP \ge \prod_{r=1}^{n} \frac{(n-1) \left(\prod_{i \neq r} y_i\right)^{\frac{1}{n-1}}}{y_r}

P(n1)nr=1n(iryi)1n1yrP \ge (n-1)^n \prod_{r=1}^{n} \frac{\left(\prod_{i \neq r} y_i\right)^{\frac{1}{n-1}}}{y_r}.

Let's analyze the product term:

r=1n(iryi)1n1yr=(i1yi)1n1y1(i2yi)1n1y2...(inyi)1n1yn\prod_{r=1}^{n} \frac{\left(\prod_{i \neq r} y_i\right)^{\frac{1}{n-1}}}{y_r} = \frac{\left(\prod_{i \neq 1} y_i\right)^{\frac{1}{n-1}}}{y_1} \cdot \frac{\left(\prod_{i \neq 2} y_i\right)^{\frac{1}{n-1}}}{y_2} \cdot ... \cdot \frac{\left(\prod_{i \neq n} y_i\right)^{\frac{1}{n-1}}}{y_n}.

Let Y=i=1nyiY = \prod_{i=1}^{n} y_i. Then iryi=Yyr\prod_{i \neq r} y_i = \frac{Y}{y_r}.

The expression becomes:

(Yy1)1n1y1(Yy2)1n1y2...(Yyn)1n1yn\frac{\left(\frac{Y}{y_1}\right)^{\frac{1}{n-1}}}{y_1} \cdot \frac{\left(\frac{Y}{y_2}\right)^{\frac{1}{n-1}}}{y_2} \cdot ... \cdot \frac{\left(\frac{Y}{y_n}\right)^{\frac{1}{n-1}}}{y_n}

=Y1n1y11n1y1Y1n1y21n1y2...Y1n1yn1n1yn= \frac{Y^{\frac{1}{n-1}} y_1^{-\frac{1}{n-1}}}{y_1} \cdot \frac{Y^{\frac{1}{n-1}} y_2^{-\frac{1}{n-1}}}{y_2} \cdot ... \cdot \frac{Y^{\frac{1}{n-1}} y_n^{-\frac{1}{n-1}}}{y_n}

=Ynn1(y1y2...yn)1n1(y1y2...yn)1= Y^{\frac{n}{n-1}} \cdot (y_1 y_2 ... y_n)^{-\frac{1}{n-1}} \cdot (y_1 y_2 ... y_n)^{-1}

=Ynn1Y1n1Y1= Y^{\frac{n}{n-1}} \cdot Y^{-\frac{1}{n-1}} \cdot Y^{-1}

=Ynn11n11=Yn1n11=Y11=Y0=1= Y^{\frac{n}{n-1} - \frac{1}{n-1} - 1} = Y^{\frac{n-1}{n-1} - 1} = Y^{1-1} = Y^0 = 1.

So, the minimum value of PP is (n1)n(n-1)^n.

The equality in AM-GM holds when all terms are equal. This means for each rr, yiy_i for iri \neq r must be equal. This implies y1=y2=...=yny_1=y_2=...=y_n.

Given r=1nyr=1\sum_{r=1}^{n} y_r = 1, if y1=y2=...=yny_1=y_2=...=y_n, then nyr=1n y_r = 1, so yr=1ny_r = \frac{1}{n} for all rr.

When yr=1ny_r = \frac{1}{n}:

xr=1yryr=11n1n=n1n1n=n1x_r = \frac{1-y_r}{y_r} = \frac{1 - \frac{1}{n}}{\frac{1}{n}} = \frac{\frac{n-1}{n}}{\frac{1}{n}} = n-1.

So, xr=n1x_r = n-1 for all rr.

The product r=1nxr=(n1)n\prod_{r=1}^{n} x_r = (n-1)^n.

Given n=2018n=2018.

The minimum value is (20181)2018=(2017)2018(2018-1)^{2018} = (2017)^{2018}.

The question states that the minimum value is equal to (k)k+1(k)^{k+1}.

Comparing (2017)2018(2017)^{2018} with (k)k+1(k)^{k+1}:

We can see that k=2017k=2017.

Then k+1=2017+1=2018k+1 = 2017+1 = 2018.

So, (k)k+1=(2017)2018(k)^{k+1} = (2017)^{2018}.

Thus, k=2017k=2017.