Solveeit Logo

Question

Question: Let $x_1, x_2, x_3 \dots x_k$ be $k$ observations and $w_i = ax_i + b$ for $i = 1,2,3 \dots k$, wher...

Let x1,x2,x3xkx_1, x_2, x_3 \dots x_k be kk observations and wi=axi+bw_i = ax_i + b for i=1,2,3ki = 1,2,3 \dots k, where aa and bb are constants. If mean of xix_i is 52 and their standard deviation is 12 and mean of wiw_i is 60 and their standard deviation is 15, then the value of aa and bb should be

Answer

a = 5/4, b = -5

Explanation

Solution

Given:

xˉ=52,σx=12,wˉ=60,σw=15,w=ax+b.\bar{x} = 52, \quad \sigma_x = 12,\quad \bar{w} = 60, \quad \sigma_w = 15, \quad w = ax + b.
  1. Mean Transformation:

    a(52)+b=6052a+b=60.(1)a(52) + b = 60 \quad \Rightarrow \quad 52a + b = 60. \quad (1)
  2. Standard Deviation Transformation:

    σw=aσx15=a12a=1512=54.\sigma_w = |a|\sigma_x \quad \Rightarrow \quad 15 = |a|\cdot 12 \quad \Rightarrow \quad |a| = \frac{15}{12} = \frac{5}{4}.

    Assuming a positive scaling factor (as typically taken in such cases), we have:

    a=54.a = \frac{5}{4}.
  3. Find bb: Substitute a=54a = \frac{5}{4} into equation (1):

    52(54)+b=6065+b=60b=6065=5.52\left(\frac{5}{4}\right) + b = 60 \quad \Rightarrow \quad 65 + b = 60 \quad \Rightarrow \quad b = 60 - 65 = -5.