Solveeit Logo

Question

Question: Let $x_0$ be the real number such that $e^{x_0}+x_0=0$. For a given real number $\alpha$, define $$g...

Let x0x_0 be the real number such that ex0+x0=0e^{x_0}+x_0=0. For a given real number α\alpha, define g(x)=3xex+3xαexαx3(ex+1)g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x+1)} for all real numbers xx.

Then which one of the following statements is TRUE?

Answer

g(x_0)=x_0

Explanation

Solution

The given function is g(x)=3xex+3xαexαx3(ex+1)g(x)=\frac{3xe^x+3x-\alpha e^x-\alpha x}{3(e^x+1)}.

We can factorize the numerator: g(x)=3x(ex+1)α(ex+x)3(ex+1)g(x)=\frac{3x(e^x+1)-\alpha(e^x+x)}{3(e^x+1)} We can split the fraction: g(x)=3x(ex+1)3(ex+1)α(ex+x)3(ex+1)g(x)=\frac{3x(e^x+1)}{3(e^x+1)} - \frac{\alpha(e^x+x)}{3(e^x+1)} For ex+10e^x+1 \neq 0 (which is always true for real xx since ex>0e^x > 0), we can simplify the first term: g(x)=xα(ex+x)3(ex+1)g(x)=x - \frac{\alpha(e^x+x)}{3(e^x+1)} We are given that x0x_0 is a real number such that ex0+x0=0e^{x_0}+x_0=0. This means ex0=x0e^{x_0}=-x_0.

Let's evaluate g(x)g(x) at x=x0x=x_0: g(x0)=x0α(ex0+x0)3(ex0+1)g(x_0)=x_0 - \frac{\alpha(e^{x_0}+x_0)}{3(e^{x_0}+1)} Since ex0+x0=0e^{x_0}+x_0=0, the numerator of the second term is zero: g(x0)=x0α(0)3(ex0+1)g(x_0)=x_0 - \frac{\alpha(0)}{3(e^{x_0}+1)} g(x0)=x00g(x_0)=x_0 - 0 g(x0)=x0g(x_0)=x_0 This result holds true for any real number α\alpha.

Let's verify this by substituting ex0=x0e^{x_0}=-x_0 into the original expression for g(x0)g(x_0): g(x0)=3x0ex0+3x0αex0αx03(ex0+1)g(x_0)=\frac{3x_0e^{x_0}+3x_0-\alpha e^{x_0}-\alpha x_0}{3(e^{x_0}+1)} Substitute ex0=x0e^{x_0}=-x_0: g(x0)=3x0(x0)+3x0α(x0)αx03(x0+1)g(x_0)=\frac{3x_0(-x_0)+3x_0-\alpha (-x_0)-\alpha x_0}{3(-x_0+1)} g(x0)=3x02+3x0+αx0αx03(1x0)g(x_0)=\frac{-3x_0^2+3x_0+\alpha x_0-\alpha x_0}{3(1-x_0)} g(x0)=3x02+3x03(1x0)g(x_0)=\frac{-3x_0^2+3x_0}{3(1-x_0)} Factor out 3x03x_0 from the numerator: g(x0)=3x0(1x0)3(1x0)g(x_0)=\frac{3x_0(1-x_0)}{3(1-x_0)} To check if 1x001-x_0 \neq 0, consider the function f(x)=ex+xf(x)=e^x+x. f(0)=1f(0)=1, f(1)=1/e1<0f(-1)=1/e-1<0. Since f(x)f(x) is continuous and increasing (f(x)=ex+1>0f'(x)=e^x+1>0), there is a unique root x0x_0 in (1,0)(-1, 0). Since x0(1,0)x_0 \in (-1, 0), 1x01-x_0 is in (1,2)(1, 2) and is not zero. We can cancel the term (1x0)(1-x_0): g(x0)=x0g(x_0)=x_0 The statement g(x0)=x0g(x_0)=x_0 is true for any given real number α\alpha.

Without the options provided, we deduce the most likely statement to be tested, based on the problem structure and the universal nature of the derived property, is g(x0)=x0g(x_0)=x_0.