Solveeit Logo

Question

Question: Let $(x^2 + 2x + 2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$, then the value of $(20a_0 - ...

Let (x2+2x+2)20=a0+a1x+a2x2++a40x40(x^2 + 2x + 2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}, then the value of (20a0a1+a39)(20a_0 - a_1 + a_{39}) is equal to

A

0

B

40

C

2202^{20}

D

2022020 \cdot 2^{20}

Answer

40

Explanation

Solution

Let P(x)=(x2+2x+2)20=a0+a1x+a2x2++a40x40P(x) = (x^2 + 2x + 2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}.

To find a0a_0, we set x=0x=0: a0=P(0)=(02+2(0)+2)20=220a_0 = P(0) = (0^2 + 2(0) + 2)^{20} = 2^{20}.

To find a1a_1, we need the first derivative of P(x)P(x): P(x)=ddx(x2+2x+2)20=20(x2+2x+2)19(2x+2)P'(x) = \frac{d}{dx}(x^2 + 2x + 2)^{20} = 20(x^2 + 2x + 2)^{19}(2x + 2). Setting x=0x=0: a1=P(0)=20(02+2(0)+2)19(2(0)+2)=20(219)(2)=20220a_1 = P'(0) = 20(0^2 + 2(0) + 2)^{19}(2(0) + 2) = 20(2^{19})(2) = 20 \cdot 2^{20}.

Now, consider the term 20a0a120a_0 - a_1: 20a0a1=20(220)(20220)=020a_0 - a_1 = 20(2^{20}) - (20 \cdot 2^{20}) = 0.

So, the expression simplifies to 0+a39=a390 + a_{39} = a_{39}.

To find a39a_{39}, we use the property of reciprocal polynomials. Let R(x)=x40P(1/x)R(x) = x^{40}P(1/x). R(x)=x40((1x)2+2(1x)+2)20R(x) = x^{40} \left(\left(\frac{1}{x}\right)^2 + 2\left(\frac{1}{x}\right) + 2\right)^{20} R(x)=x40(1+2x+2x2x2)20R(x) = x^{40} \left(\frac{1 + 2x + 2x^2}{x^2}\right)^{20} R(x)=x40(2x2+2x+1)20x40R(x) = x^{40} \frac{(2x^2 + 2x + 1)^{20}}{x^{40}} R(x)=(2x2+2x+1)20R(x) = (2x^2 + 2x + 1)^{20}.

The expansion of x40P(1/x)x^{40}P(1/x) is x40(a0+a1/x+a2/x2++a40/x40)=a0x40+a1x39+a2x38++a40x^{40}(a_0 + a_1/x + a_2/x^2 + \dots + a_{40}/x^{40}) = a_0x^{40} + a_1x^{39} + a_2x^{38} + \dots + a_{40}. Comparing the coefficients of R(x)R(x) with a0x40+a1x39++a40a_0x^{40} + a_1x^{39} + \dots + a_{40}, we see that the coefficient of x39x^{39} in P(x)P(x) (a39a_{39}) is the coefficient of x1x^1 in R(x)R(x).

Let R(x)=b0+b1x+b2x2++b40x40R(x) = b_0 + b_1x + b_2x^2 + \dots + b_{40}x^{40}. Then a39=b1a_{39} = b_1. To find b1b_1, we can differentiate R(x)R(x): R(x)=ddx(2x2+2x+1)20=20(2x2+2x+1)19(4x+2)R'(x) = \frac{d}{dx}(2x^2 + 2x + 1)^{20} = 20(2x^2 + 2x + 1)^{19}(4x + 2). Setting x=0x=0: b1=R(0)=20(2(0)2+2(0)+1)19(4(0)+2)=20(1)19(2)=40b_1 = R'(0) = 20(2(0)^2 + 2(0) + 1)^{19}(4(0) + 2) = 20(1)^{19}(2) = 40.

Therefore, a39=40a_{39} = 40.

The value of the expression (20a0a1+a39)(20a_0 - a_1 + a_{39}) is 0+40=400 + 40 = 40.