Question
Question: Let $(x^2 + 2x + 2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$, then the value of $(20a_0 - ...
Let (x2+2x+2)20=a0+a1x+a2x2+⋯+a40x40, then the value of (20a0−a1+a39) is equal to

0
40
220
20⋅220
40
Solution
Let P(x)=(x2+2x+2)20=a0+a1x+a2x2+⋯+a40x40.
To find a0, we set x=0: a0=P(0)=(02+2(0)+2)20=220.
To find a1, we need the first derivative of P(x): P′(x)=dxd(x2+2x+2)20=20(x2+2x+2)19(2x+2). Setting x=0: a1=P′(0)=20(02+2(0)+2)19(2(0)+2)=20(219)(2)=20⋅220.
Now, consider the term 20a0−a1: 20a0−a1=20(220)−(20⋅220)=0.
So, the expression simplifies to 0+a39=a39.
To find a39, we use the property of reciprocal polynomials. Let R(x)=x40P(1/x). R(x)=x40((x1)2+2(x1)+2)20 R(x)=x40(x21+2x+2x2)20 R(x)=x40x40(2x2+2x+1)20 R(x)=(2x2+2x+1)20.
The expansion of x40P(1/x) is x40(a0+a1/x+a2/x2+⋯+a40/x40)=a0x40+a1x39+a2x38+⋯+a40. Comparing the coefficients of R(x) with a0x40+a1x39+⋯+a40, we see that the coefficient of x39 in P(x) (a39) is the coefficient of x1 in R(x).
Let R(x)=b0+b1x+b2x2+⋯+b40x40. Then a39=b1. To find b1, we can differentiate R(x): R′(x)=dxd(2x2+2x+1)20=20(2x2+2x+1)19(4x+2). Setting x=0: b1=R′(0)=20(2(0)2+2(0)+1)19(4(0)+2)=20(1)19(2)=40.
Therefore, a39=40.
The value of the expression (20a0−a1+a39) is 0+40=40.