Solveeit Logo

Question

Statistics Question on Sampling Distributions

Let 𝑋1,𝑋2, … , 𝑋𝑛 be a random sample from a u(θ+σ3,θ+3σ)u(θ +\frac{σ}{\sqrt3},θ+\sqrt3σ) distribution, where 𝜃 ∈ ℝ and 𝜎>0 are unknown parameters. Let 𝑋̅ =1𝑛i=1nXi\frac{ 1}{ 𝑛} ∑^n _{i=1}X_i and 𝑆=1ni=1n(XiX)2𝑆 =\sqrt \frac{1}{n} ∑^n_{i=1}(X_i-\overline{X})^2 Let θˆ\^θ and σˆ\^σ be the method of moment estimators of 𝜃 and 𝜎 ,respectively. Then, which one of the following statements is FALSE?

A

σˆ+3θˆ=3X3s\^σ+\sqrt3\^θ=\sqrt3\overline{X}-3s

B

23σˆ+θˆ=X43S2\sqrt3\^σ+\^θ=\overline{X}-4\sqrt3S

C

3σˆ+θˆ=X+3S\sqrt3\^σ+\^θ=\overline{X}+\sqrt3\,S

D

σˆ3θˆ=9S3X\^σ-\sqrt3\,\^θ=9\,S-\sqrt3\,\overline{X}

Answer

23σˆ+θˆ=X43S2\sqrt3\^σ+\^θ=\overline{X}-4\sqrt3S

Explanation

Solution

The correct option is (B): 23σˆ+θˆ=X43S2\sqrt3\^σ+\^θ=\overline{X}-4\sqrt3S