Solveeit Logo

Question

Statistics Question on Testing of Hypotheses

Let X1, X2, X3, X4 be a random sample from a distribution with the probability mass function
f(x)={θx(1θ)1x,x=0,1 0,otherwise,f(x) = \begin{cases} \theta^x(1-\theta)^{1-x}, & x=0,1 \\\ 0, & \text{otherwise}, \end{cases}
where θ ∈ (0, 1) is unknown. Let 0 < α ≤ 1. To test the hypothesis H0:θ=12H_0:\theta=\frac{1}{2} against H1:θ>12,H_1:\theta>\frac{1}{2},, consider the size α test that rejects H0 if and only if i=14𝑋𝑖kα\sum^4_{i=1} 𝑋𝑖 ≥ k_α, for some 𝑘α ∈ {0, 1, 2, 3, 4}. Then for which one of the following values of α, the size α test does NOT exist ?

A

116\frac{1}{16}

B

14\frac{1}{4}

C

1116\frac{11}{16}

D

516\frac{5}{16}

Answer

14\frac{1}{4}

Explanation

Solution

The correct option is (B) : 14\frac{1}{4}.