Solveeit Logo

Question

Statistics Question on Testing of Hypotheses

Let π‘₯1, π‘₯2, π‘₯3 and π‘₯4 be observed values of a random sample from an 𝑁(πœƒ, 𝜎 2 ) distribution, where πœƒβˆˆβ„ and 𝜎>0 are unknown parameters. Suppose that π‘₯Μ…=14βˆ‘i=14π‘₯𝑖=3.6\frac{1}{4} βˆ‘^4_{i=1} π‘₯_𝑖 = 3.6 and 13βˆ‘i=14(π‘₯π‘–βˆ’xβ€Ύ)2=20.25\frac{1}{3} βˆ‘^4_{i=1} (π‘₯_𝑖-\overline{x} )^2= 20.25 . For testing the null hypothesis 𝐻0 ∢ πœƒ=0 against 𝐻1 βˆΆπœƒβ‰ 0, the 𝑝-value of the likelihood ratio test equals

A

0.712

B

0.208

C

0.104

D

0.052

Answer

0.208

Explanation

Solution

The correct option is (B): 0.208