Solveeit Logo

Question

Question: Let $x<1$, then value of $\begin{vmatrix} x^2+2 & 2x+1 & 2log_4 2 \\ 2x+1 & x+2 & 2log_9 3 \\ log_2 ...

Let x<1x<1, then value of x2+22x+12log422x+1x+22log93log28log3272log164\begin{vmatrix} x^2+2 & 2x+1 & 2log_4 2 \\ 2x+1 & x+2 & 2log_9 3 \\ log_2 8 & log_3 27 & 2log_{16} 4 \end{vmatrix}

Answer

(x1)2(x3)(x-1)^2(x-3)

Explanation

Solution

To evaluate the given determinant, we first simplify the logarithmic terms.

The determinant is: D=x2+22x+12log422x+1x+22log93log28log3272log164D = \begin{vmatrix} x^2+2 & 2x+1 & 2log_4 2 \\ 2x+1 & x+2 & 2log_9 3 \\ log_2 8 & log_3 27 & 2log_{16} 4 \end{vmatrix}

Let's simplify each logarithmic term:

  1. 2log42=log4(22)=log44=12\log_4 2 = \log_4 (2^2) = \log_4 4 = 1 (Alternatively, using change of base formula: 2×log22log24=2×12=12 \times \frac{\log_2 2}{\log_2 4} = 2 \times \frac{1}{2} = 1)

  2. 2log93=log9(32)=log99=12\log_9 3 = \log_9 (3^2) = \log_9 9 = 1 (Alternatively: 2×log33log39=2×12=12 \times \frac{\log_3 3}{\log_3 9} = 2 \times \frac{1}{2} = 1)

  3. log28=log2(23)=3\log_2 8 = \log_2 (2^3) = 3

  4. log327=log3(33)=3\log_3 27 = \log_3 (3^3) = 3

  5. 2log164=log16(42)=log1616=12\log_{16} 4 = \log_{16} (4^2) = \log_{16} 16 = 1 (Alternatively: 2×log44log416=2×12=12 \times \frac{\log_4 4}{\log_4 16} = 2 \times \frac{1}{2} = 1)

Substitute these simplified values back into the determinant: D=x2+22x+112x+1x+21331D = \begin{vmatrix} x^2+2 & 2x+1 & 1 \\ 2x+1 & x+2 & 1 \\ 3 & 3 & 1 \end{vmatrix}

Now, we can simplify the determinant using row operations. Apply the operations R1R1R3R_1 \to R_1 - R_3 and R2R2R3R_2 \to R_2 - R_3:

For R1R_1: (x2+2)3=x21(x^2+2) - 3 = x^2 - 1 (2x+1)3=2x2(2x+1) - 3 = 2x - 2 11=01 - 1 = 0

For R2R_2: (2x+1)3=2x2(2x+1) - 3 = 2x - 2 (x+2)3=x1(x+2) - 3 = x - 1 11=01 - 1 = 0

The determinant becomes: D=x212x202x2x10331D = \begin{vmatrix} x^2-1 & 2x-2 & 0 \\ 2x-2 & x-1 & 0 \\ 3 & 3 & 1 \end{vmatrix}

Expand the determinant along the third column (C3C_3): D=0(cofactor of (1,3))0(cofactor of (2,3))+1x212x22x2x1D = 0 \cdot (\text{cofactor of } (1,3)) - 0 \cdot (\text{cofactor of } (2,3)) + 1 \cdot \begin{vmatrix} x^2-1 & 2x-2 \\ 2x-2 & x-1 \end{vmatrix} D=1[(x21)(x1)(2x2)(2x2)]D = 1 \cdot [(x^2-1)(x-1) - (2x-2)(2x-2)]

Factor out common terms: x21=(x1)(x+1)x^2-1 = (x-1)(x+1) 2x2=2(x1)2x-2 = 2(x-1)

Substitute these into the expression for DD: D=(x1)(x+1)(x1)[2(x1)][2(x1)]D = (x-1)(x+1)(x-1) - [2(x-1)][2(x-1)] D=(x1)2(x+1)4(x1)2D = (x-1)^2(x+1) - 4(x-1)^2

Now, factor out (x1)2(x-1)^2: D=(x1)2[(x+1)4]D = (x-1)^2 [(x+1) - 4] D=(x1)2(x3)D = (x-1)^2 (x-3)

The given condition x<1x<1 does not further simplify the expression, it just specifies the domain for xx.

The final answer is (x1)2(x3)(x-1)^2(x-3).

Explanation of the solution:

  1. Simplify all logarithmic terms in the determinant using logarithm properties.

  2. Substitute the numerical values of the simplified logarithmic terms back into the determinant.

  3. Apply row operations (R1R1R3R_1 \to R_1 - R_3 and R2R2R3R_2 \to R_2 - R_3) to create zeros in the third column, simplifying the expansion.

  4. Expand the determinant along the third column.

  5. Factorize the terms in the resulting 2×22 \times 2 determinant and simplify the expression to obtain the final value.