Solveeit Logo

Question

Mathematics Question on Sets

Let XX, YY, ZZ be subsets of UU, where n(U)=35n(U) = 35, n(X)=15n(X) = 15, n(Y)=22n(Y) = 22, n(Z)=14n(Z) = 14 and n(XY)=11n(X \cap Y) = 11, n(YZ)=8n(Y \cap Z) = 8, n(XZ)=5n(X \cap Z) = 5, n(XYZ)=3n(X \cap Y \cap Z) = 3 then n(XYZ)n(X \cup Y \cup Z)' equals

A

3535

B

3030

C

2626

D

55

Answer

55

Explanation

Solution

We know that n(XYZ)=n(X)+n(Y)+n(X \cup Y \cup Z) = n(X) + n(Y) + n(Z)n(XY)n(YZ)n(XZ)+n(XYZ)n(Z) - n (X \cap Y) - n(Y \cap Z) - n(X \cap Z) + n (X \cap Y \cap Z) =(15+22+14)(11+8+5)+3=30= (15 + 22 + 14)-(11 + 8 + 5 )+ 3 = 30 n(XYZ)=n(U)n(XFZ)=3530=5\therefore n (X \cup Y \cup Z)' = n (U ) - n (X \cup F \cup Z) = 35-30 = 5