Solveeit Logo

Question

Question: Let $(x, y, z)$ be an ordered triplet of real numbers, such that $x < 1, y < 2, z < 3$ and $x + \fra...

Let (x,y,z)(x, y, z) be an ordered triplet of real numbers, such that x<1,y<2,z<3x < 1, y < 2, z < 3 and x+y2+z3>0x + \frac{y}{2} + \frac{z}{3} > 0. Let (x0,y0,z0)(x_0, y_0, z_0) be the triplet (x,y,z)(x, y, z) for which expression (1x)(2y)(3z)(x+y2+z3)(1 - x)(2 - y)(3 - z)(x + \frac{y}{2} + \frac{z}{3}) is maximum, then the value of z0x0y0\frac{z_0}{x_0y_0} is

A

0

Answer

6

Explanation

Solution

To maximize the expression P=(1x)(2y)(3z)(x+y2+z3)P = (1 - x)(2 - y)(3 - z)(x + \frac{y}{2} + \frac{z}{3}) under the given constraints, we use the AM-GM inequality.

1. Introduce new variables: Let a=1xa = 1 - x, b=2yb = 2 - y, c=3zc = 3 - z. From the constraints x<1,y<2,z<3x < 1, y < 2, z < 3, we have a>0,b>0,c>0a > 0, b > 0, c > 0.

2. Express x,y,zx, y, z in terms of a,b,ca, b, c: x=1ax = 1 - a y=2by = 2 - b z=3cz = 3 - c

3. Substitute into the expression: The expression becomes P=abc((1a)+2b2+3c3)P = a \cdot b \cdot c \cdot ( (1 - a) + \frac{2 - b}{2} + \frac{3 - c}{3} ). Simplify the last term: x+y2+z3=(1a)+(1b2)+(1c3)=3ab2c3x + \frac{y}{2} + \frac{z}{3} = (1 - a) + (1 - \frac{b}{2}) + (1 - \frac{c}{3}) = 3 - a - \frac{b}{2} - \frac{c}{3}. Let d=3ab2c3d = 3 - a - \frac{b}{2} - \frac{c}{3}. The constraint x+y2+z3>0x + \frac{y}{2} + \frac{z}{3} > 0 means d>0d > 0. So, the expression to maximize is P=abcdP = a \cdot b \cdot c \cdot d.

4. Apply AM-GM inequality: To apply AM-GM effectively, we need a product of terms whose sum is constant. Consider the following four positive terms: u1=au_1 = a u2=b2u_2 = \frac{b}{2} u3=c3u_3 = \frac{c}{3} u4=3ab2c3u_4 = 3 - a - \frac{b}{2} - \frac{c}{3}

The sum of these terms is: u1+u2+u3+u4=a+b2+c3+(3ab2c3)=3u_1 + u_2 + u_3 + u_4 = a + \frac{b}{2} + \frac{c}{3} + (3 - a - \frac{b}{2} - \frac{c}{3}) = 3. This sum is a constant.

Now, express PP in terms of u1,u2,u3,u4u_1, u_2, u_3, u_4: a=u1a = u_1 b=2u2b = 2u_2 c=3u3c = 3u_3 P=u1(2u2)(3u3)u4=6u1u2u3u4P = u_1 \cdot (2u_2) \cdot (3u_3) \cdot u_4 = 6 \cdot u_1 u_2 u_3 u_4.

By the AM-GM inequality, for non-negative numbers u1,u2,u3,u4u_1, u_2, u_3, u_4: u1+u2+u3+u44u1u2u3u44\frac{u_1 + u_2 + u_3 + u_4}{4} \ge \sqrt[4]{u_1 u_2 u_3 u_4} Substituting the sum: 34u1u2u3u44\frac{3}{4} \ge \sqrt[4]{u_1 u_2 u_3 u_4} Raising both sides to the power of 4: (34)4u1u2u3u4\left(\frac{3}{4}\right)^4 \ge u_1 u_2 u_3 u_4 u1u2u3u481256u_1 u_2 u_3 u_4 \le \frac{81}{256}.

The maximum value of u1u2u3u4u_1 u_2 u_3 u_4 is 81256\frac{81}{256}. The maximum value of PP is 681256=2431286 \cdot \frac{81}{256} = \frac{243}{128}.

5. Find the values of x0,y0,z0x_0, y_0, z_0 for which the maximum occurs: The equality in AM-GM holds when all terms are equal: u1=u2=u3=u4u_1 = u_2 = u_3 = u_4. Since their sum is 3, each term must be 34\frac{3}{4}. u1=a=34u_1 = a = \frac{3}{4} u2=b2=34    b=64=32u_2 = \frac{b}{2} = \frac{3}{4} \implies b = \frac{6}{4} = \frac{3}{2} u3=c3=34    c=94u_3 = \frac{c}{3} = \frac{3}{4} \implies c = \frac{9}{4} And u4=3ab2c3=3343434=394=34u_4 = 3 - a - \frac{b}{2} - \frac{c}{3} = 3 - \frac{3}{4} - \frac{3}{4} - \frac{3}{4} = 3 - \frac{9}{4} = \frac{3}{4}, which is consistent.

Now, find x0,y0,z0x_0, y_0, z_0: x0=1a=134=14x_0 = 1 - a = 1 - \frac{3}{4} = \frac{1}{4} y0=2b=232=12y_0 = 2 - b = 2 - \frac{3}{2} = \frac{1}{2} z0=3c=394=34z_0 = 3 - c = 3 - \frac{9}{4} = \frac{3}{4}

6. Calculate the required expression: We need to find the value of z0x0y0\frac{z_0}{x_0y_0}. z0x0y0=3/4(1/4)(1/2)=3/41/8\frac{z_0}{x_0y_0} = \frac{3/4}{(1/4)(1/2)} = \frac{3/4}{1/8} z0x0y0=34×8=3×2=6\frac{z_0}{x_0y_0} = \frac{3}{4} \times 8 = 3 \times 2 = 6.

The final answer is 6\boxed{6}.