Solveeit Logo

Question

Statistics Question on Univariate Distributions

Let (𝑋, 𝑌, 𝑍) be a random vector having the joint probability density function
f(x,y,z)={12xy,if 0<z<y<x<1. 12x2,if0<z<x<y<2x<2,\0,Otherwise.f(x,y, z) =\begin{cases} \frac{1}{2\,xy}, & \quad \text{if }0<z<y<x<1.\\\ \frac{1}{2x^2}, & \quad if\,0<z<x<y<2x<2,\\\0, & \quad\,\,Otherwise.\end{cases}
Then, which one of the following statements is FALSE?

A

𝑃(𝑍<𝑌<𝑋)=12𝑃(𝑍 < 𝑌 < 𝑋) = \frac{1}{2}

B

𝑃(𝑋 < 𝑌 < 𝑍) = 0

C

𝐸(min{𝑋, 𝑌}) =14\frac{1}{4}

D

𝑉𝑎𝑟 (𝑌 | 𝑋 = 12\frac{1}{2} ) = 112\frac{1}{12}

Answer

𝐸(min{𝑋, 𝑌}) =14\frac{1}{4}

Explanation

Solution

The correct option is (C): 𝐸(min{𝑋, 𝑌}) =14\frac{1}{4}