Solveeit Logo

Question

Question: Let x, y, z are real numbers such that xyz + x + z = y and xz ≠ 1. If the greatest value of the expr...

Let x, y, z are real numbers such that xyz + x + z = y and xz ≠ 1. If the greatest value of the expression (21+x221+y2+31+z2)(\frac{2}{1+x^2} - \frac{2}{1+y^2} + \frac{3}{1+z^2}) is pq\frac{p}{q}, where p and q are relatively prime, then (p - q) is equal to

A

2

B

3

C

1

D

4

Answer

2

Explanation

Solution

Given the equation xyz+x+z=yxyz + x + z = y, we can rearrange it to y(1xz)=x+zy(1-xz) = x+z. Since xz1xz \neq 1, we can write y=x+z1xzy = \frac{x+z}{1-xz}.

This expression for yy is reminiscent of the tangent addition formula: tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}. Let x=tanαx = \tan \alpha and z=tanβz = \tan \beta. Then y=tan(α+β)y = \tan(\alpha + \beta). The condition xz1xz \neq 1 ensures that tanαtanβ1\tan \alpha \tan \beta \neq 1, which means α+βπ2+kπ\alpha + \beta \neq \frac{\pi}{2} + k\pi for any integer kk, ensuring tan(α+β)\tan(\alpha+\beta) is well-defined.

The expression to maximize is E=21+x221+y2+31+z2E = \frac{2}{1+x^2} - \frac{2}{1+y^2} + \frac{3}{1+z^2}. Using the identity 1+tan2θ=sec2θ1+\tan^2 \theta = \sec^2 \theta, we have 11+tan2θ=cos2θ\frac{1}{1+\tan^2 \theta} = \cos^2 \theta. Substituting x=tanαx = \tan \alpha, y=tan(α+β)y = \tan(\alpha + \beta), and z=tanβz = \tan \beta: E=2cos2α2cos2(α+β)+3cos2βE = 2 \cos^2 \alpha - 2 \cos^2(\alpha + \beta) + 3 \cos^2 \beta.

Using the identity cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}: E=2(1+cos(2α)2)2(1+cos(2(α+β))2)+3(1+cos(2β)2)E = 2 \left(\frac{1 + \cos(2\alpha)}{2}\right) - 2 \left(\frac{1 + \cos(2(\alpha + \beta))}{2}\right) + 3 \left(\frac{1 + \cos(2\beta)}{2}\right) E=(1+cos(2α))(1+cos(2α+2β))+32(1+cos(2β))E = (1 + \cos(2\alpha)) - (1 + \cos(2\alpha + 2\beta)) + \frac{3}{2}(1 + \cos(2\beta)) E=1+cos(2α)1cos(2α+2β)+32+32cos(2β)E = 1 + \cos(2\alpha) - 1 - \cos(2\alpha + 2\beta) + \frac{3}{2} + \frac{3}{2} \cos(2\beta) E=cos(2α)cos(2α+2β)+32+32cos(2β)E = \cos(2\alpha) - \cos(2\alpha + 2\beta) + \frac{3}{2} + \frac{3}{2} \cos(2\beta).

Let A=2αA = 2\alpha and B=2βB = 2\beta. The expression becomes: E=32+cosA+32cosBcos(A+B)E = \frac{3}{2} + \cos A + \frac{3}{2} \cos B - \cos(A+B).

To find the maximum value, we can analyze this expression. Consider the case when β=kπ\beta = k\pi for some integer kk. This implies z=tan(kπ)=0z = \tan(k\pi) = 0. If z=0z=0, the original equation becomes x(0)+x+0=yx(0) + x + 0 = y, so y=xy=x. The expression EE becomes: E=21+x221+x2+31+02=0+3=3E = \frac{2}{1+x^2} - \frac{2}{1+x^2} + \frac{3}{1+0^2} = 0 + 3 = 3. This value is attained for any real xx when z=0z=0.

Let's verify this with the trigonometric form. If β=kπ\beta = k\pi, then B=2β=2kπB = 2\beta = 2k\pi. E=32+cosA+32cos(2kπ)cos(A+2kπ)E = \frac{3}{2} + \cos A + \frac{3}{2} \cos(2k\pi) - \cos(A+2k\pi) E=32+cosA+32(1)cosAE = \frac{3}{2} + \cos A + \frac{3}{2}(1) - \cos A E=32+32=3E = \frac{3}{2} + \frac{3}{2} = 3.

The greatest value of the expression is 3. We are given that the greatest value is pq\frac{p}{q}, where pp and qq are relatively prime. So, pq=3=31\frac{p}{q} = 3 = \frac{3}{1}. This means p=3p=3 and q=1q=1. They are relatively prime. We need to find the value of (pq)(p-q). pq=31=2p-q = 3 - 1 = 2.