Question
Question: Let x, y, z and t be real numbers such that (x, y) lies on a circle having radius 3, (z, t) lies on ...
Let x, y, z and t be real numbers such that (x, y) lies on a circle having radius 3, (z, t) lies on a circle having radius 4 and xt - yz = 12, then the greatest value of P = xz is ____ [Note: Both circles have centre at origi
Answer
6
Explanation
Solution
Solution:
Given that
x2+y2=9,z2+t2=16,xt−yz=12.Step 1: Parameterize the points on the circles: Let
x=3cosA,y=3sinA,z=4cosB,t=4sinB.Step 2: Substitute in the condition xt−yz=12:
(3cosA)(4sinB)−(3sinA)(4cosB)=12(cosAsinB−sinAcosB)=12.Recall that cosAsinB−sinAcosB=sin(B−A). Thus,
12sin(B−A)=12⇒sin(B−A)=1.The general solution is:
B−A=2π+2kπ,k∈Z.Take B=A+2π.
Step 3: Express P=xz in terms of A:
P=xz=3cosA⋅4cosB=12cosAcos(A+2π).Using the identity cos(A+2π)=−sinA:
P=12cosA(−sinA)=−12cosAsinA.Utilize the double-angle identity:
sin(2A)=2sinAcosA⇒cosAsinA=2sin(2A).So,
P=−12⋅2sin(2A)=−6sin(2A).Step 4: Find the maximum value of P. Since sin(2A) varies between −1 and 1, the maximum of P=−6sin(2A) occurs when sin(2A) is minimum:
sin(2A)=−1⇒Pmax=−6(−1)=6.