Solveeit Logo

Question

Question: Let x, y, z and t be real numbers such that (x, y) lies on a circle having radius 3, (z, t) lies on ...

Let x, y, z and t be real numbers such that (x, y) lies on a circle having radius 3, (z, t) lies on a circle having radius 4 and xt - yz = 12, then the greatest value of P = xz is ____ [Note: Both circles have centre at origi

Answer

6

Explanation

Solution

Solution:

Given that

x2+y2=9,z2+t2=16,xtyz=12.x^2+y^2=9,\quad z^2+t^2=16,\quad xt-yz=12.

Step 1: Parameterize the points on the circles: Let

x=3cosA,y=3sinA,z=4cosB,t=4sinB.x=3\cos A,\quad y=3\sin A,\quad z=4\cos B,\quad t=4\sin B.

Step 2: Substitute in the condition xtyz=12xt - yz = 12:

(3cosA)(4sinB)(3sinA)(4cosB)=12(cosAsinBsinAcosB)=12.(3\cos A)(4\sin B)-(3\sin A)(4\cos B)=12(\cos A\sin B-\sin A\cos B)=12.

Recall that cosAsinBsinAcosB=sin(BA)\cos A\sin B-\sin A\cos B=\sin(B-A). Thus,

12sin(BA)=12sin(BA)=1.12\sin(B-A)=12\quad \Rightarrow \quad \sin(B-A)=1.

The general solution is:

BA=π2+2kπ,kZ.B-A=\frac{\pi}{2}+2k\pi,\quad k\in\mathbb{Z}.

Take B=A+π2B=A+\frac{\pi}{2}.

Step 3: Express P=xzP=xz in terms of AA:

P=xz=3cosA4cosB=12cosAcos(A+π2).P=xz=3\cos A\cdot 4\cos B=12\cos A \cos\left(A+\frac{\pi}{2}\right).

Using the identity cos(A+π2)=sinA\cos\left(A+\frac{\pi}{2}\right)=-\sin A:

P=12cosA(sinA)=12cosAsinA.P=12\cos A(-\sin A)=-12\cos A\sin A.

Utilize the double-angle identity:

sin(2A)=2sinAcosAcosAsinA=sin(2A)2.\sin(2A)=2\sin A\cos A \quad \Rightarrow \quad \cos A\sin A=\frac{\sin(2A)}{2}.

So,

P=12sin(2A)2=6sin(2A).P=-12\cdot\frac{\sin(2A)}{2}=-6\sin(2A).

Step 4: Find the maximum value of PP. Since sin(2A)\sin(2A) varies between 1-1 and 11, the maximum of P=6sin(2A)P=-6\sin(2A) occurs when sin(2A)\sin(2A) is minimum:

sin(2A)=1Pmax=6(1)=6.\sin(2A)=-1\quad \Rightarrow \quad P_{\max}=-6(-1)=6.