Solveeit Logo

Question

Mathematics Question on Determinants

Let x,y,z>1x, y, z>1 and A=[1logxylogxz logyx2logyz logzxlogzy3]A=\begin{bmatrix}1 & \log _x y & \log _x z \\\ \log _y x & 2 & \log _y z \\\ \log _z x & \log _z y & 3\end{bmatrix} Then ∣adj(adj A 2)∣ is equal to

A

484^8

B

282^8

C

242^4

D

646^4

Answer

282^8

Explanation

Solution

∣A∣=logx⋅logy⋅logz1​∣∣​logxlogxlogx​logy2logylogy​logzlogz3logz​∣∣​=2
⇒∣∣​adj(adjA2)∣∣​=∣∣​A2∣∣​4=28