Question
Mathematics Question on Random Variables
Let x∗y = x2+y3 and (x∗1)∗1 = x∗(1∗1). Then a value of 2sin−1(x4+x2+2x4+x2−2) is
A
4π
B
3π
C
2π
D
6π
Answer
3π
Explanation
Solution
Given x∗y = x2+y3 and (x∗1)∗1 =x∗(1∗1)
So, (x2+1)∗1=x∗2
⇒(x2+1)2+1=x2+8
⇒x4+2x2+2=x2+8
⇒(x2)2+x2–6=0
∴ (x2+3)(x2–2)=0
∴x2=2
Now,
2sin−1(x4+x2+2x4+x2−2)
=2sin−1(84)
= 2.6π
= 3π