Solveeit Logo

Question

Mathematics Question on Random Variables

Let xyx * y = x2+y3x^2 + y^3 and (x1)1(x * 1) * 1 = x(11)x * (1 * 1). Then a value of 2sin1(x4+x22x4+x2+2)2 sin^{-1}\bigg(\frac{x^4+x^2-2}{x^4+x^2+2}\bigg) is

A

π4\frac{π}{4}

B

π3\frac{π}{3}

C

π2\frac{π}{2}

D

π6\frac{π}{6}

Answer

π3\frac{π}{3}

Explanation

Solution

Given xyx * y = x2+y3x^2 + y^3 and (x1)1(x * 1) * 1 =x(11) x * (1 * 1)

So, (x2+1)1=x2(x^2 + 1) * 1 = x * 2

(x2+1)2+1=x2+8⇒ (x^2 + 1)^2 + 1 = x^2 + 8

x4+2x2+2=x2+8⇒ x^4 + 2x^2 + 2 = x^2 + 8

(x2)2+x26=0⇒ (x^2)^2 + x^2 – 6 = 0

(x2+3)(x22)=0(x^2 + 3)(x^2 – 2) = 0

x2=2∴ x^2 = 2

Now,

2sin1(x4+x22x4+x2+2)2sin^{-1}\bigg(\frac{x^4+x^2-2}{x^4+x2+2}\bigg)

=2sin1(48)= 2sin^{-1}\bigg(\frac{4}{8}\bigg)

= 2.π62. \frac{π}{6}

= π3\frac{π}{3}