Solveeit Logo

Question

Statistics Question on Univariate Distributions

Let (X, Y) be a random vector having the joint probability density function
f(x,y)={2πe2xe(yx)22,0<x<,<y< 0,otherwisef(x,y)=\begin{cases} \frac{\sqrt2}{\sqrt{\pi}}e^{-2x}e^{-\frac{(y-x)^2}{2}}, & 0 <x< ∞,-∞<y<∞\\\ 0,& \text{otherwise} \end{cases}
Then E(Y) equals

A

12\frac{1}{2}

B

2

C

1

D

14\frac{1}{4}

Answer

12\frac{1}{2}

Explanation

Solution

The correct option is (A) : 12\frac{1}{2}.