Question
Mathematics Question on Random Variables
Let x,y>0. If x3y2=215, then the least value of 3x+2y is
A
30
B
32
C
36
D
40
Answer
40
Explanation
Solution
x,y>0 and x3y2=215
Now,
3x+2y=(x+x+x)+(y+y)
So, by A.M G.M inequality
53x+2y≥5x3.y2
∴3x+2y≥55215
≥40
∴ Least value of 3x+4y=40
Therefore, the correct option is (D): 40