Solveeit Logo

Question

Mathematics Question on Random Variables

Let x,y>0x, y > 0. If x3y2=215x^3y^2 = 2^{15}, then the least value of 3x+2y3x + 2y is

A

30

B

32

C

36

D

40

Answer

40

Explanation

Solution

x,y>0x, y > 0 and x3y2=215x^3y^2 = 2^{15}

Now,

3x+2y=(x+x+x)+(y+y)3x+2y = (x+x+x)+(y+y)

So, by A.M G.M inequality

3x+2y55x3.y2\frac{3x+2y}{5} \geq 5\sqrt{x^3.y^2}

  3x+2y55215∴ \; 3x+2y \geq 55\sqrt{2^{15}}

40≥40

Least value of 3x+4y=403x + 4y = 40

Therefore, the correct option is (D): 4040