Solveeit Logo

Question

Question: Let φ(x, y) = 0 be the equation of a circle. If φ(0, λ)=0 has equal roots\(\lambda = \frac { 4 } { 5...

Let φ(x, y) = 0 be the equation of a circle. If φ(0, λ)=0 has equal rootsλ=45,5\lambda = \frac { 4 } { 5 } , 5then the centre of the circle is

A

(2,2910)\left( 2 , \frac { 29 } { 10 } \right)

B

(2910,2)\left( \frac { 29 } { 10 } , 2 \right)

C

(2,2910)\left( - 2 , \frac { 29 } { 10 } \right)

D

None of these

Answer

(2910,2)\left( \frac { 29 } { 10 } , 2 \right)

Explanation

Solution

Let φ (x,y)x2+y2+2gx+2fy+c=0( x , y ) \equiv x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0

ϕ(0,λ)=0+λ2+0+2fλ+c=0\therefore \phi ( 0 , \lambda ) = 0 + \lambda ^ { 2 } + 0 + 2 \mathrm { f } \lambda + \mathrm { c } = 0 have equal roots.

then

f=2&c=4\therefore \mathrm { f } = - 2 \& \mathrm { c } = 4 &

λ2+2 gλ+c=0\therefore \lambda ^ { 2 } + 2 \mathrm {~g} \lambda + \mathrm { c } = 0

Here

\therefore λ2+2gλ+4=0\lambda ^ { 2 } + 2 g \lambda + 4 = 0 have roots 45,5\frac { 4 } { 5 } , 5

45+5=2 g\therefore \frac { 4 } { 5 } + 5 = - 2 \mathrm {~g}

g=2910\mathrm { g } = - \frac { 29 } { 10 }

\thereforeCentre = (g,f)=(2910,2)( - \mathrm { g } , - \mathrm { f } ) = \left( \frac { 29 } { 10 } , 2 \right)