Solveeit Logo

Question

Question: Let X₁, X₂,...X₁₈ be eighteen observation such that $\sum_{i=1}^{18}(x_i - \alpha) = 36$ and $\sum_{...

Let X₁, X₂,...X₁₈ be eighteen observation such that i=118(xiα)=36\sum_{i=1}^{18}(x_i - \alpha) = 36 and i=118(xiβ)2=90\sum_{i=1}^{18}(x_i - \beta)^2 = 90, where α\alpha and β\beta are distinct real numbers. If the standard deviation of these observation is 1, then the value of αβ|\alpha - \beta| is ____.

Answer

4

Explanation

Solution

  1. Relate sum of deviations to the mean: Given i=118(xiα)=36\sum_{i=1}^{18}(x_i - \alpha) = 36. This expands to i=118xi18α=36\sum_{i=1}^{18}x_i - 18\alpha = 36. Let xˉ\bar{x} be the mean of the observations, so i=118xi=18xˉ\sum_{i=1}^{18}x_i = 18\bar{x}. Substituting this, we get 18xˉ18α=3618\bar{x} - 18\alpha = 36. Dividing by 18, we obtain xˉα=2\bar{x} - \alpha = 2.

  2. Use the variance formula: The standard deviation is given as σ=1\sigma = 1, so the variance is σ2=12=1\sigma^2 = 1^2 = 1. The variance is defined as σ2=1ni=1n(xixˉ)2\sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x})^2. For n=18n=18 and σ2=1\sigma^2=1, we have i=118(xixˉ)2=nσ2=18×1=18\sum_{i=1}^{18}(x_i - \bar{x})^2 = n\sigma^2 = 18 \times 1 = 18.

  3. Relate the second given sum to the mean and variance: We use the identity: i=1n(xic)2=i=1n(xixˉ)2+n(xˉc)2\sum_{i=1}^{n}(x_i - c)^2 = \sum_{i=1}^{n}(x_i - \bar{x})^2 + n(\bar{x} - c)^2. Here, n=18n=18, c=βc=\beta, i=118(xiβ)2=90\sum_{i=1}^{18}(x_i - \beta)^2 = 90, and i=118(xixˉ)2=18\sum_{i=1}^{18}(x_i - \bar{x})^2 = 18. Substituting these values: 90=18+18(xˉβ)290 = 18 + 18(\bar{x} - \beta)^2 9018=18(xˉβ)290 - 18 = 18(\bar{x} - \beta)^2 72=18(xˉβ)272 = 18(\bar{x} - \beta)^2 (xˉβ)2=7218=4(\bar{x} - \beta)^2 = \frac{72}{18} = 4 Taking the square root, we get xˉβ=2|\bar{x} - \beta| = 2.

  4. Solve for αβ|\alpha - \beta|: We have two equations: (a) xˉα=2\bar{x} - \alpha = 2 (b) xˉβ=2|\bar{x} - \beta| = 2, which implies xˉβ=2\bar{x} - \beta = 2 or xˉβ=2\bar{x} - \beta = -2.

    Case 1: xˉα=2\bar{x} - \alpha = 2 and xˉβ=2\bar{x} - \beta = 2. Subtracting these equations: (xˉα)(xˉβ)=22(\bar{x} - \alpha) - (\bar{x} - \beta) = 2 - 2, which simplifies to βα=0\beta - \alpha = 0, or α=β\alpha = \beta. This contradicts the given condition that α\alpha and β\beta are distinct real numbers.

    Case 2: xˉα=2\bar{x} - \alpha = 2 and xˉβ=2\bar{x} - \beta = -2. Subtracting these equations: (xˉα)(xˉβ)=2(2)(\bar{x} - \alpha) - (\bar{x} - \beta) = 2 - (-2), which simplifies to βα=4\beta - \alpha = 4. Therefore, αβ=(βα)=4=4|\alpha - \beta| = |-(\beta - \alpha)| = |-4| = 4.

The value of αβ|\alpha - \beta| is 4.