Solveeit Logo

Question

Question: Let ƒ(x) = x<sup>3</sup> + ax<sup>2</sup> + bx + 5 sin<sup>2</sup>x be an increasing function in the...

Let ƒ(x) = x3 + ax2 + bx + 5 sin2x be an increasing function in the set of real numbers R. Then a and b satisfy the condition –

A

a2 – 3b – 15 > 0

B

a2 – 3b + 15 > 0

C

a2 – 3b – 15 < 0

D

a > 0 and b > 0

Answer

a2 – 3b – 15 < 0

Explanation

Solution

We have ƒ(x) = x3 + ax2 + bx + 5 sin2 x

̃ ƒ¢(x) = 3x2 + 2ax + b + 5 sin 2x

Q ƒ (x) is an increasing function

\ ƒ¢(x) > 0 ̃ 3x2 + 2ax + b + 5 sin 2x > 0,

Q sin 2x < 1

\ 0 < 3x2 + 2ax + b + 5 sin 2x < 3x2 + 2ax + b + 5

̃ 3x2 + 2ax + b + 5 > 0

̃ 4a2 – 4.3 (b + 5) > 0

̃ a2 – 3b – 15 < 0.