Solveeit Logo

Question

Mathematics Question on Differential equations

Let x = x(y) be the solution of the differential equation
2yexy2dx+(y24xexy2)dy=02ye^{\frac{x}{y^2}}dx+(y^2−4xe^{\frac{x}{y^2}})dy=0
such that x(1) = 0. Then, x(e) is equal to

A

e loge(2)

B

-e loge(2)

C

e2 loge(2)

D

-e2 loge(2)

Answer

-e2 loge(2)

Explanation

Solution

The correct answer is (D) : -e2 loge(2)
Given differential equation
2yexy2dx+(y24xexy2)dy=0,x(1)=02ye^{\frac{x}{y^2}}dx+(y^2−4xe^{\frac{x}{y^2}})dy=0 ,x(1)=0
exy2[2ydx4xdy]=y2dy⇒e^{\frac{x}{y^2}}[2ydx−4xdy]=−y^2dy
exy2[2ydx4xdyy4]=1ydy⇒e^{\frac{x}{y^2}}[\frac{2ydx−4xdy}{y^4}]=\frac{−1}{y}dy
2exy2d(xy2)=1ydy⇒2e^{\frac{x}{y^2}}d(\frac{x}{y^2})=\frac{−1}{y}dy
2exy2=⇒2e^{\frac{x}{y^2}}= −ln ⁡y+c…(i)
Now, using x(1) = 0, c = 2
So, for x(e), Put y = e in (i)
2exe2=1+22e^{\frac{x}{e^2}}=−1+2
xe2⇒\frac{x}{e^2} =ln(12)⁡(\frac{1}{2}) ⇒x(e)= −e2ln⁡2