Question
Mathematics Question on Differential equations
Let x = x(y) be the solution of the differential equation
2yey2xdx+(y2−4xey2x)dy=0
such that x(1) = 0. Then, x(e) is equal to
A
e loge(2)
B
-e loge(2)
C
e2 loge(2)
D
-e2 loge(2)
Answer
-e2 loge(2)
Explanation
Solution
The correct answer is (D) : -e2 loge(2)
Given differential equation
2yey2xdx+(y2−4xey2x)dy=0,x(1)=0
⇒ey2x[2ydx−4xdy]=−y2dy
⇒ey2x[y42ydx−4xdy]=y−1dy
⇒2ey2xd(y2x)=y−1dy
⇒2ey2x= −ln y+c…(i)
Now, using x(1) = 0, c = 2
So, for x(e), Put y = e in (i)
2ee2x=−1+2
⇒e2x =ln(21) ⇒x(e)= −e2ln2