Solveeit Logo

Question

Mathematics Question on Differential equations

Let x=x(t)x = x(t) and y=y(t)y = y(t) be solutions of the differential equations dxdt+ax=0\frac{dx}{dt} + ax = 0 and dydt+by=0\frac{dy}{dt} + by = 0 respectively, a,bRa, b \in \mathbb{R}. Given x(0)=2x(0) = 2, y(0)=1y(0) = 1, and 3y(1)=2x(1)3y(1) = 2x(1), the value of t for which x(t)=y(t)x(t) = y(t), is:

A

log232\log_{ \frac{2}{3}}2

B

log43\log_{4} 3

C

log34\log_{3} 4

D

log423\log_4{{\frac{2}{3}}}

Answer

log423\log_4{{\frac{2}{3}}}

Explanation

Solution

Given differential equations are:
dxdt+ax=0x(t)=x(0)eat\frac{dx}{dt} + ax = 0 \Rightarrow x(t) = x(0)e^{-at}
dydt+by=0y(t)=y(0)ebt\frac{dy}{dt} + by = 0 \Rightarrow y(t) = y(0)e^{-bt}
From the initial conditions, we are provided:
x(0)=2,  y(0)=1x(0) = 2, \; y(0) = 1
Thus, the solutions for x(t)x(t) and y(t)y(t) become:
x(t)=2eatx(t) = 2e^{-at}, y(t)=ebty(t) = e^{-bt}

Step 1: Relation at t=1t = 1

We are given:
3y(1)=2x(1)3y(1) = 2x(1)
Substituting the values of x(1)x(1) and y(1)y(1):
3eb=2×2ea3eb=4ea3e^{-b} = 2 \times 2e^{-a} \Rightarrow 3e^{-b} = 4e^{-a}
Taking the natural logarithm on both sides:
b=a+ln(43)-b = -a + \ln\left(\frac{4}{3}\right)
Rearranging terms, we get:
b=a+ln(43)b = a + \ln\left(\frac{4}{3}\right)

Step 2: Finding tt for which x(t)=y(t)x(t) = y(t)

We need to find the value of tt such that:
2eat=ebt2e^{-at} = e^{-bt}
Dividing both sides by ebte^{-bt}:
2=e(ba)t2 = e^{(b-a)t}
Taking the natural logarithm of both sides:
ln2=(ba)t\ln 2 = (b - a)t
Substituting the expression for bab - a from earlier:
ba=ln(43)b - a = \ln\left(\frac{4}{3}\right)
Thus:t=ln2ln(43)t = \frac{\ln 2}{\ln \left(\frac{4}{3}\right)}

Step 3: Simplifying the Expression

To simplify
ln2ln(43)\frac{\ln 2}{\ln \left(\frac{4}{3}\right)}, we recognize that:
log4(23)=ln(23)ln4=ln2ln(43)\log_4 \left(\frac{2}{3}\right) = \frac{\ln \left(\frac{2}{3}\right)}{\ln 4} = \frac{\ln 2}{\ln \left(\frac{4}{3}\right)}
Thus, the value of tt is:t=log4(23)t = \log_4 \left(\frac{2}{3}\right)