Question
Mathematics Question on Derivatives
Let x(t)=22costsin2t and y(t)=22sintsin2t ,t∈(0,2π)
Then dx2d2y1+(dxdy)2 at t=4π is equal to
A
3−22
B
32
C
31
D
3−2
Answer
3−2
Explanation
Solution
x=22costsin2t, y=22sintsin2t
∴ dtdx=sin2t22cos3t, dtdy=sin2t22sin3t
∴dxdy=tan3t,( at t=4π,dxdy=−1)
and dx2d2y=3sec23t.dxdt=22cos3t3sec23t.sin2t
(At t=4π,dx2d2y=−3)
∴dx2d2y1+(dxdy)2=−32=3−2