Solveeit Logo

Question

Question: Let $x = \sum_{i=1}^{10} \frac{1}{10\sqrt{3}}[\frac{1}{1+(\frac{i}{10\sqrt{3}})^2}]$ and $y = \sum_{...

Let x=i=1101103[11+(i103)2]x = \sum_{i=1}^{10} \frac{1}{10\sqrt{3}}[\frac{1}{1+(\frac{i}{10\sqrt{3}})^2}] and y=i=091103[11+(i103)2]y = \sum_{i=0}^{9} \frac{1}{10\sqrt{3}}[\frac{1}{1+(\frac{i}{10\sqrt{3}})^2}], then-

A

x<π6x < \frac{\pi}{6}

B

y>π6y > \frac{\pi}{6}

C

x+y<π3x+y < \frac{\pi}{3}

D

x+y>π3x+y > \frac{\pi}{3}

Answer

x < \frac{\pi}{6}, y > \frac{\pi}{6}, x+y > \frac{\pi}{3}

Explanation

Solution

Solution Explanation:

Write

Δx=1103\Delta x=\frac{1}{10\sqrt{3}}

and notice that

x=i=110Δx11+(i103)2,y=i=09Δx11+(i103)2.x=\sum_{i=1}^{10}\Delta x\, \frac{1}{1+\left(\frac{i}{10\sqrt{3}}\right)^2},\quad y=\sum_{i=0}^{9}\Delta x\, \frac{1}{1+\left(\frac{i}{10\sqrt{3}}\right)^2}.

These are the right‐ and left–Riemann sums, respectively, for

I=01311+x2dx.I=\int_{0}^{\frac{1}{\sqrt{3}}}\frac{1}{1+x^2}\,dx.

Since

013dx1+x2=arctan(13)=π6,\int_{0}^{\frac{1}{\sqrt{3}}}\frac{dx}{1+x^2}=\arctan\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6},

and because the function f(x)=11+x2f(x)=\frac{1}{1+x^2} is decreasing on [0,13][0,\frac{1}{\sqrt{3}}], the right sum underestimates and the left sum overestimates the integral. Hence:

  • x<π6x<\frac{\pi}{6}
  • y>π6y>\frac{\pi}{6}.

Also, the trapezoidal rule is given by x+y2\frac{x+y}{2}. For a concave function (here, ff is concave on [0,13][0,\frac{1}{\sqrt{3}}]), the trapezoidal rule gives an overestimate. Therefore:

x+y2>π6x+y>π3.\frac{x+y}{2}>\frac{\pi}{6}\quad\Longrightarrow\quad x+y>\frac{\pi}{3}.