Solveeit Logo

Question

Question: Let [x] stands for the greatest integer function. The value of \(\int_{0}^{21}{\lbrack x\rbrack^{3}}...

Let [x] stands for the greatest integer function. The value of 021[x]3\int_{0}^{21}{\lbrack x\rbrack^{3}}dx is -

A

44001

B

44000

C

40400

D

None of these

Answer

None of these

Explanation

Solution

021[x]3dx\int_{0}^{21}{\lbrack x\rbrack^{3}dx} = r=020rr+1[x]3dx\sum_{r = 0}^{20}{\int_{r}^{r + 1}{\lbrack x\rbrack^{3}dx}}

r=020rr+1r3dx\sum_{r = 0}^{20}{\int_{r}^{r + 1}{r^{3}dx}}

=120r3=(20.212)2\sum_{1}^{20}{r^{3} = \left( \frac{20.21}{2} \right)^{2}} = 44100