Solveeit Logo

Question

Question: Let ƒ(x) = sin x , g(x) = [x + 1] and g{ƒ(x)} = h(x) ; where, [ ] is the greatest integer function. ...

Let ƒ(x) = sin x , g(x) = [x + 1] and g{ƒ(x)} = h(x) ; where, [ ] is the greatest integer function. Then h¢limx0f(x)x2\lim_{x \rightarrow 0}\frac{f(x)}{x^{2}}is –

A

Non-existent

B

1

C

–1

D

None of these

Answer

Non-existent

Explanation

Solution

h(x) = g{ƒ(x)} = [ƒ(x) + 1] = [sin x + 1]

LHD = h¢(π20)\left( \frac { \pi } { 2 } - 0 \right)

Ž LHD =

Ž LHD = = = + 

RHD = h¢(π2+0)\left( \frac { \pi } { 2 } + 0 \right)

Ž RHD = [sin(π2+h)+1][sinπ2+1]h\frac { \left[ \sin \left( \frac { \pi } { 2 } + \mathrm { h } \right) + 1 \right] - \left[ \sin \frac { \pi } { 2 } + 1 \right] } { \mathrm { h } }

Ž RHD = = = –.