Solveeit Logo

Question

Question: Let ƒ(x) = sgn (sgn (sgn x)). Then \(\lim_{x \rightarrow 0}\)ƒ(x) is –...

Let ƒ(x) = sgn (sgn (sgn x)). Then limx0\lim_{x \rightarrow 0}ƒ(x) is –

A

1

B

2

C

0

D

None of these

Answer

None of these

Explanation

Solution

By definition we have for x ≠ 0, sgn (sgn x)

= sgn (xx)\left( \frac { x } { | x | } \right)

= = = sgn x. Thus, sgn [sgn)

(sgn x) = sgn x = {1x>00x=01x<0\left\{ \begin{array} { r l } 1 & x > 0 \\ 0 & x = 0 \\ - 1 & x < 0 \end{array} \right.

Therefore, limx0+\lim _ { x \rightarrow 0 + } ƒ(x) = 1 but limx0\lim _ { x \rightarrow 0 - } ƒ(x) = –1.