Solveeit Logo

Question

Mathematics Question on Relations and functions

Let X_{n}=\left\\{z=x+i y:|z|^{2} \leq \frac{1}{n}\right\\} for all integers n1n \geq 1. Then, n=1\overset{\infty}{\underset{n=1}{\cap}} is

A

A singleton set

B

Not a finite set

C

An empty set

D

A finite set with more than one elements

Answer

A singleton set

Explanation

Solution

Given, X_{n} =\left\\{z=x+i Y:|z|^{2} \leq \frac{1}{n}\right\\} =\left\\{x^{2}+y^{2} \leq \frac{1}{n}\right\\} \therefore X_{1}=\left\\{x^{2}+y^{2} \leq 1\right\\} X_{2}=\left\\{x^{2}+y^{2} \leq \frac{1}{2}\right\\} X_{3}=\left\\{x^{2}+y^{2} \leq \frac{1}{3}\right\\} X_{\infty}=\left\\{x^{2}+y \leq 0\right\\} n=1Xn=X1X2X3X\therefore \overset{\infty}{\underset{n=1}{\cap}} X_{n} =X_{1} \cap X_{2} \cap X_{3} \cap \ldots \cap X_{\infty} =\left\\{x^{2}+y^{2}=0\right\\} Hence, n=1Xn\overset{\infty}{\underset{n=1}{\cap}} X_{n} is a singleton set.