Question
Mathematics Question on Relations and functions
Let X_{n}=\left\\{z=x+i y:|z|^{2} \leq \frac{1}{n}\right\\} for all integers n≥1. Then, n=1∩∞ is
A
A singleton set
B
Not a finite set
C
An empty set
D
A finite set with more than one elements
Answer
A singleton set
Explanation
Solution
Given, X_{n} =\left\\{z=x+i Y:|z|^{2} \leq \frac{1}{n}\right\\} =\left\\{x^{2}+y^{2} \leq \frac{1}{n}\right\\} \therefore X_{1}=\left\\{x^{2}+y^{2} \leq 1\right\\} X_{2}=\left\\{x^{2}+y^{2} \leq \frac{1}{2}\right\\} X_{3}=\left\\{x^{2}+y^{2} \leq \frac{1}{3}\right\\} X_{\infty}=\left\\{x^{2}+y \leq 0\right\\} ∴n=1∩∞Xn=X1∩X2∩X3∩…∩X∞ =\left\\{x^{2}+y^{2}=0\right\\} Hence, n=1∩∞Xn is a singleton set.