Question
Mathematics Question on limits and derivatives
Let xn=(1−31)2(1−61)2(1−101)2........(1−2n(n+1)1)2,n≥2. Then the value of n→∞limxn is
A
44564
B
44570
C
Jan-81
D
0
Answer
44570
Explanation
Solution
We have, xn=[(1−31)(1−61)
(1−101)…(1−n(n+1)2)]2
⇒xn=[∏n=2n(n(n+1)n2+n−2)]2
=[∏n=2n(n(n+1)(n+2)(n−1))]2
=[∏n=2n(n+1n+2)⋅∏n=2n(nn−1)]2
=[∏n=2n(n+1n+2)]2[∏n=2n(nn−1)]2
⇒xn=(34⋅45⋅56…n+1n+2)2(21⋅32⋅43…nn−1)2
⇒xn=(3n+2)2(n1)2
⇒xn=91(nn+2)2
⇒xn=91(1+n2)2
⇒n→∞limxn=91(1+0)2=91