Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Let (xn)(x_n) and (yn)(y_n) be sequences of real numbers defined by
x1=1,y1=12,xn+1=xn+yn2,andyn+1=xnynfor all nN.x_1 = 1, \quad y_1 = \frac{1}{2}, \quad x_{n+1} = \frac{x_n + y_n}{2}, \quad \text{and} \quad y_{n+1} = \sqrt{x_n y_n} \quad \text{for all} \ n \in \mathbb{N}.
Then which one of the following is true?

A

(xn)(x_n) is convergent, but (yn)(y_n) is not convergent.

B

(xn)(x_n) is not convergent, but (yn)(y_n) is convergent.

C

Both (xn)(x_n) and (yn)(y_n) are convergent and limnxn>limnyn\lim_{n \to \infty} x_n > \lim_{n \to \infty} y_n .

D

Both (xn)(x_n) and (yn)(y_n) are convergent and limnxn=limnyn\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n .

Answer

Both (xn)(x_n) and (yn)(y_n) are convergent and limnxn=limnyn\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n .

Explanation

Solution

The correct option is (D): Both (xn)(x_n) and (yn)(y_n) are convergent and limnxn=limnyn\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n .