Solveeit Logo

Question

Question: Let ƒ(x) = (log (1 + x))<sup>–1</sup> – x<sup>–1</sup>, x \> 0, then...

Let ƒ(x) = (log (1 + x))–1 – x–1, x > 0, then

A

1 < ƒ(x) < 2

B

–1 < ƒ(x) < 0

C

0 < ƒ(x) < 1

D

None of these

Answer

0 < ƒ(x) < 1

Explanation

Solution

Consider g(x) = log (1 + x) on the interval [0, x].

Since g(x) is differentiable on (0, x), therefore by Lagrange’s mean value theorem, there exists c ∈ (0, x) such that

log(1+x)log(1+0)x0\frac{\log(1 + x) - \log(1 + 0)}{x - 0} = g ′ (3) = 11+c\frac{1}{1 + c}

⇒  log(1+x)x\frac{\log(1 + x)}{x} = 11+c\frac{1}{1 + c} < 1 … (1)

⇒ log (1 + x) < x ⇒ ƒ(x) > 0

Also, c ∈ (0, x) ⇒ c < x ⇒ 11+c\frac{1}{1 + c} > 11+x\frac{1}{1 + x}

log(1+x)x\frac{\log(1 + x)}{x} > 11+x\frac{1}{1 + x} [By (1)]

⇒ log (1 + x) > x1+x\frac{x}{1 + x}

1log(1+x)\frac{1}{\log(1 + x)} < 1+xx\frac{1 + x}{x}

⇒ 1log(1+x)\frac{1}{\log(1 + x)}< 1 + 1x\frac{1}{x}1log(1+x)\frac{1}{\log(1 + x)}1x\frac{1}{x} < 1

⇒ ƒ(x) < 1.