Question
Question: Let (x) = (log (1 + x))<sup>–1</sup> – x<sup>–1</sup>, x \> 0, then...
Let (x) = (log (1 + x))–1 – x–1, x > 0, then
A
1 < (x) < 2
B
–1 < (x) < 0
C
0 < (x) < 1
D
None of these
Answer
0 < (x) < 1
Explanation
Solution
Consider g(x) = log (1 + x) on the interval [0, x].
Since g(x) is differentiable on (0, x), therefore by Lagrange’s mean value theorem, there exists c ∈ (0, x) such that
x−0log(1+x)−log(1+0) = g ′ (3) = 1+c1
⇒ xlog(1+x) = 1+c1 < 1 … (1)
⇒ log (1 + x) < x ⇒ (x) > 0
Also, c ∈ (0, x) ⇒ c < x ⇒ 1+c1 > 1+x1
⇒ xlog(1+x) > 1+x1 [By (1)]
⇒ log (1 + x) > 1+xx
⇒ log(1+x)1 < x1+x
⇒ log(1+x)1< 1 + x1 ⇒ log(1+x)1 – x1 < 1
⇒ (x) < 1.