Solveeit Logo

Question

Question: Let ƒ(x) = \(\left\{ \begin{matrix} x^{3} - x^{2} + 10x - 5, & x \leq 1 \\ –2x + \log_{2}(b^{2} - 2)...

Let ƒ(x) = {x3x2+10x5,x12x+log2(b22),x>1 \left\{ \begin{matrix} x^{3} - x^{2} + 10x - 5, & x \leq 1 \\ –2x + \log_{2}(b^{2} - 2), & x > 1 \end{matrix} \right.\ the set of values of b for which ƒ(x) have greatest value at x = 1 is given by –

A

1 £ b £ 2

B

b = {1, 2}

C

b Ī (–, –1)

D

None

Answer

None

Explanation

Solution

For x £ 1

ƒ¢(x) = 3x2 – 2x + 10 = 3 [(x13)2+293]\left\lbrack \left( x - \frac{1}{3} \right)^{2} + \frac{29}{3} \right\rbrack > 0

So ƒ(x) is an increasing function for x £ 1

For x > 1, ƒ¢(x) = –2

So, ƒ(x) is decreasing function for x > 1.

Now, ƒ(x) will have greatest value at x = 1. If

limx1+\lim_{x \rightarrow 1 +}ƒ(x) £ ƒ(1) Ž limh0\lim_{h \rightarrow 0}ƒ(1 + h) £ 5

Ž limh0\lim_{h \rightarrow 0} – 2(1 + h) + log2 (b2 – 2) £ 5

Ž –2 + log2 (b2 – 2) £ 5 Ž log2 (b2 – 2) £ 7

Ž b2 £ 130 but b2 > 2

Ž 2 < b2 £ 130

\ b Ī [–130\sqrt{130}, –2\sqrt{2}) Č (2\sqrt{2},130\sqrt{130}]