Question
Question: Let (x) = \(\left\{ \begin{matrix} \sin x, & x \neq n\pi \\ 2, & x = n\pi \end{matrix} \right.\ \),...
Let (x) = {sinx,2,x=nπx=nπ , where n ∈ I and
g (x) = {x2+1,3,x=2x=2 , then limx→0g [(x)] is –
A
1
B
0
C
3
D
Does not exist
Answer
1
Explanation
Solution
g [(x)] = {[f(x)]2+1,3,x=2x=2
∴ g [ (x)] = sin2 x + 1, x ≠ nπ
3, x = nπ
R.H.L. = limh→0 g [(0 + h)] = limh→0 (sin2 h + 1) = 1
L.H.L = limh→0 g [(0 – h)] = limh→0 (sin2 h + 1) = 1
∴ limh→0 g[ (x)] = 1.