Solveeit Logo

Question

Question: Let ƒ(x) = \(\left\{ \begin{array} { c l } | x | & \text { for } 0 < | x | \leq 2 \\ 1 & \text { for...

Let ƒ(x) = {x for 0<x21 for x=0\left\{ \begin{array} { c l } | x | & \text { for } 0 < | x | \leq 2 \\ 1 & \text { for } x = 0 \end{array} \right. . Then at x = 0, ƒ has –

A

A local maximum

B

No local maximum

C

A local minimum

D

) No extremum

Explanation

Solution

)

Sol. Let us redefine the function

x (+ ive) \ |x| = x for 0 < x < 2

x (– ive) \ |x| = –x for 0 < –x < 2

or –2 < x < 0

\ ƒ(x) =

dydx\frac { d y } { d x } does not exist at L.H.D. = –1

and R.H.D. = 1 at x = 0.