Solveeit Logo

Question

Mathematics Question on Matrices

Let xRx \, \in \, R and let P=[111 022 003],Q=[2x;x; 040 xx;6]P = \begin{bmatrix}1&1&1\\\ 0&2&2\\\ 0&0&3\end{bmatrix},\quad Q = \begin{bmatrix}2&x;&x;\\\ 0&4&0\\\ x&x;&6\end{bmatrix} and R=PQP1R = PQP^{-1}. Then which of the following options is/are correct?

A

There exists a real number x such that PQ = QP

B

detR = det [2x;x; 040 xx;5]+8,\begin{bmatrix}2&x;&x;\\\ 0&4&0\\\ x&x;&5\end{bmatrix} +8, for all xRx \, \in \, R

C

For x = 0,if R [1 a b]=6[1 a b],\begin{bmatrix}1\\\ a\\\ b\end{bmatrix} = 6 \begin{bmatrix}1\\\ a\\\ b\end{bmatrix}, then a + b = 5

D

For x = 1, there exists a unit vector αi^+βj^+γk^\alpha\hat{i} + \beta\hat{j} +\gamma\hat{k} for which R[α β γ]=[0 0 0]R\begin{bmatrix}\alpha\\\ \beta\\\ \gamma\end{bmatrix} = \begin{bmatrix}0\\\ 0\\\ 0\end{bmatrix}

Answer

For x = 0,if R [1 a b]=6[1 a b],\begin{bmatrix}1\\\ a\\\ b\end{bmatrix} = 6 \begin{bmatrix}1\\\ a\\\ b\end{bmatrix}, then a + b = 5

Explanation

Solution

det(RR) = det(PQP1PQP^{-1}) = (det PP)(detQQ) (1detP)\left(\frac{1}{det\,P}\right) == det QQ =484x2=48-4x^{2} for x=1x = 1 det (R)440\left(R\right)-44 \ne 0 \therefore for equation R[α β γ]=[0 0 0]R\begin{bmatrix}\alpha\\\ \beta\\\ \gamma\end{bmatrix}=\begin{bmatrix}0\\\ 0\\\ 0\end{bmatrix} We will have trivial solution α=β=γ\alpha=\beta=\gamma PQ=QPPQ = QP PQP1=QPQP^{-1} = Q R=QR = Q No value of x. det [2x;x; 040 xx;5]+8\begin{bmatrix}2&x;&x;\\\ 0&4&0\\\ x&x;&5\end{bmatrix}+8 =(404x2)+8=484x2detRxR=\left(40-4x^{2}\right)+8=48-4x^{2}-det R\,\forall\,x\,\in\,R R=[212/3 044/3 006]R=\begin{bmatrix}2&1&2/3\\\ 0&4&4/3\\\ 0&0&6\end{bmatrix} (R6I)[1 a b]=O\left(R-6I\right)\begin{bmatrix}1\\\ a\\\ b\end{bmatrix}=O 4+a+2b3=0\Rightarrow-4+a+\frac{2b}{3}=0 2a+4b3=0-2a+\frac{4b}{3}=0 a=2b=3\Rightarrow a=2\,b=3 a+b=5a+b=5