Solveeit Logo

Question

Mathematics Question on Trigonometry

Let x=mnx = \frac{m}{n} ( m,nm, n are co-prime natural numbers) be a solution of the equation cos(2sin1x)=19\cos \left( 2 \sin^{-1} x \right) = \frac{1}{9} and let α,β(α>β)\alpha, \beta (\alpha > \beta) be the roots of the equation mx2nxm+n=0mx^2 - nx - m + n = 0. Then the point (α,β)(\alpha, \beta) lies on the line

A

3x + 2y = 2

B

5x – 8y = –9

C

3x – 2y = –2

D

5x + 8y = 9

Answer

5x + 8y = 9

Explanation

Solution

Step 1. Assume sin1x=θ\sin^{-1} x = \theta, so that sinθ=x\sin \theta = x.

Step 2. Given cos(2θ)=19\cos(2\theta) = \frac{1}{9}, we use the identity cos(2θ)=12sin2θ\cos(2\theta) = 1 - 2\sin^2 \theta:
12x2=191 - 2x^2 = \frac{1}{9}
2x2=119=892x^2 = 1 - \frac{1}{9} = \frac{8}{9}
x2=49    x=±23x^2 = \frac{4}{9} \implies x = \pm \frac{2}{3}

Step 3. Since mm and nn are co-prime natural numbers, we take x=23x = \frac{2}{3}, so m=2m = 2 and n=3n = 3.

Step 4. Form the quadratic equation mx2nxm+n=0mx^2 - nx - m + n = 0:
2x23x2+3=02x^2 - 3x - 2 + 3 = 0
2x23x+1=02x^2 - 3x + 1 = 0

Step 5. Solve for the roots α\alpha and β\beta:
x=3±942122=3±14x = \frac{3 \pm \sqrt{9 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{3 \pm \sqrt{1}}{4}
x=1,12x = 1, \, \frac{1}{2}

Step 6. Check if the point (α,β)=(1,12)(\alpha, \beta) = (1, \frac{1}{2}) satisfies any of the given equations:**
5(1)+8(12)=5+4=95(1) + 8 \left( \frac{1}{2} \right) = 5 + 4 = 9

Thus, the point (α,β)(\alpha, \beta) lies on the line 5x+8y=95x + 8y = 9.

The Correct Answer is: 5x+8y=95x + 8y = 9.