Solveeit Logo

Question

Mathematics Question on Trigonometry

Let x+1x=2cosαx+\dfrac{1}{x}=2cosα .For any nNn∈N,the value of xn+1xnx^n+\dfrac{1}{x^n}​ is .

A

cos(nα)cos(nα)

B

2cos(nα)2cos(nα)

C

2isin(nα)2isin(nα)

D

isin(nα)isin(nα)

E

4cos(nα)4cos(nα)

Answer

2cos(nα)2cos(nα)

Explanation

Solution

Give that

Let x+1x=2cosαx+\dfrac{1}{x}=2cosα. For any nNn∈N

x=cosα+isinα=eiαx=cosα+isinα=e^{iα}

So, 1x=x1=eiα=cosαisinα\dfrac{1}{x}​=x^{−1}=e^{−iα}=cosα−isinα

x+1x=2cosαx+\dfrac{1}{x}​=2cosα

So now , xn+1xn=xn+xnx^n+\dfrac{1}{x^n}​=x^n+x^{−n}

         $ =(cosα+isinα)^n+(cosα+isinα)^{−n}$

          $=cosnα+isinnα+sinnα−isinnα$  
          $=2cosnα$ (_Ans)