Solveeit Logo

Question

Mathematics Question on Probability

Let X denotes the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.

Answer

When two fair dice are rolled, 6 × 6 = 36 observations are obtained.
P(X=2)=P(1,1)=136\frac{1}{36}

P(x=3) = p(1,2)+p(2,1)=236\frac{2}{36}=118\frac{1}{18}

P(X = 4) = P(1, 3) + P(2, 2) + P(3, 1) = 336=112\frac{3}{36}=\frac{1}{12}

P(X = 5) = P(1, 4) + P(2, 3) + P(3, 2) + P(4, 1) =436=19\frac{4}{36}=\frac{1}{9}

P(X = 6) = P(1, 5) + P (2, 4) + P(3, 3) + P(4, 2) + P(5, 1) = 536\frac{5}{36}

P(X = 7) = P(1, 6) + P(2, 5) + P(3, 4) + P(4, 3) + P(5, 2) + P(6, 1) = 636=16\frac{6}{36}=\frac{1}{6}

P(X = 8) = P(2, 6) + P(3, 5) + P(4, 4) + P(5, 3) + P(6, 2) = 536\frac{5}{36}

P(X = 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3) = 436=19\frac{4}{36}=\frac{1}{9}

P(X = 10) = P(4, 6) + P(5, 5) + P(6, 4) =336=112\frac{3}{36}=\frac{1}{12}

P(X = 11) = P(5, 6) + P(6, 5) = 236\frac{2}{36}=118\frac{1}{18}

P(X = 12) = P(6, 6) = 136\frac{1}{36}

x23456789101112
p(x)136\frac{1}{36}118\frac{1}{18}112\frac{1}{12}19\frac{1}{9}536\frac{5}{36}16\frac{1}{6}536\frac{5}{36}19\frac{1}{9}112\frac{1}{12}118\frac{1}{18}136\frac{1}{36}

Then, E(X)=Xi.P(Xi)\sum X_i.P(X_i)

=2 × 136\frac{1}{36}+3× 118\frac{1}{18}+4 × 112\frac{1}{12}+5 × 19\frac{1}{9}+6 × 536\frac{5}{36}+7× 16\frac{1}{6}+8× 536\frac{5}{36}+9×19\frac{1}{9}+10 ×112\frac{1}{12}+11×118\frac{1}{18}+12×136\frac{1}{36}

= 7

E(X2)=Xi2.P(Xi)E(X^2)= \sum X^2_i.P(X_i)

= 4×136\frac{1}{36}+9× 118\frac{1}{18}+16 × 112\frac{1}{12}+25 × 19\frac{1}{9}+36 × 536\frac{5}{36}+49× 16\frac{1}{6}+64× 536\frac{5}{36}+81×19\frac{1}{9}+100 ×112\frac{1}{12}+121×118\frac{1}{18}+144×136\frac{1}{36}

= 98718\frac{987}{18} = 54.833

Then Var(X) = E(X2)[E(X)]2E(X^2)-[E(X)]^2

=54.833-(7)2(7)^2

= 54.8334954.833-49

=5.8335.833

Therefore Standard deviation

= Var(X)\sqrt{Var (X)}

= 5.833\sqrt{5.833}

= 2.415