Question
Mathematics Question on Probability
Let X denotes the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.
When two fair dice are rolled, 6 × 6 = 36 observations are obtained.
P(X=2)=P(1,1)=361
P(x=3) = p(1,2)+p(2,1)=362=181
P(X = 4) = P(1, 3) + P(2, 2) + P(3, 1) = 363=121
P(X = 5) = P(1, 4) + P(2, 3) + P(3, 2) + P(4, 1) =364=91
P(X = 6) = P(1, 5) + P (2, 4) + P(3, 3) + P(4, 2) + P(5, 1) = 365
P(X = 7) = P(1, 6) + P(2, 5) + P(3, 4) + P(4, 3) + P(5, 2) + P(6, 1) = 366=61
P(X = 8) = P(2, 6) + P(3, 5) + P(4, 4) + P(5, 3) + P(6, 2) = 365
P(X = 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3) = 364=91
P(X = 10) = P(4, 6) + P(5, 5) + P(6, 4) =363=121
P(X = 11) = P(5, 6) + P(6, 5) = 362=181
P(X = 12) = P(6, 6) = 361
x | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
p(x) | 361 | 181 | 121 | 91 | 365 | 61 | 365 | 91 | 121 | 181 | 361 |
Then, E(X)=∑Xi.P(Xi)
=2 × 361+3× 181+4 × 121+5 × 91+6 × 365+7× 61+8× 365+9×91+10 ×121+11×181+12×361
= 7
E(X2)=∑Xi2.P(Xi)
= 4×361+9× 181+16 × 121+25 × 91+36 × 365+49× 61+64× 365+81×91+100 ×121+121×181+144×361
= 18987 = 54.833
Then Var(X) = E(X2)−[E(X)]2
=54.833-(7)2
= 54.833−49
=5.833
Therefore Standard deviation
= Var(X)
= 5.833
= 2.415