Solveeit Logo

Question

Question: Let X denote the number of times heads occur in n tosses of a fair coin. If P(X = 4), P (X = 5) and ...

Let X denote the number of times heads occur in n tosses of a fair coin. If P(X = 4), P (X = 5) and P(X = 6) are in A.P.; then

value of n is -

A

7, 14

B

10

C

12

D

None of these

Answer

7, 14

Explanation

Solution

Clearly, X is a binomial variate with parameters n and p

= 12\frac { 1 } { 2 } such that

P (X = r) = nCr pr qn–r = nCr (12)nr\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } - \mathrm { r } }= nCr (12)n\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } }

Now, P (X = 4), P (X = 5) and P (X = 6) are in A.P.

Ž 2P (X = 5) = P (X = 4) + P (X = 6)

Ž 2 . nC5 (12)n\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } } = nC4 (12)n\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } } + nC6 (12)n\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } } Ž 2 nC5 = nC4 + nC6

Ž 2 n!(n5)!5!\frac { n ! } { ( n - 5 ) ! 5 ! } = +Ž 25(n5)\frac { 2 } { 5 ( n - 5 ) }

= 1(n4)(n5)\frac { 1 } { ( n - 4 ) ( n - 5 ) }+ 16×5\frac { 1 } { 6 \times 5 }

Ž n2 – 21n + 98 = 0 Ž (n – 7) (n – 14) = 0 Ž n = 7 or 14.

Hence (1) is correct answer