Solveeit Logo

Question

Question: Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function $f(x...

Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x)=[x]2[x]3f(x) = \sqrt{\frac{|[x]|-2}{|[x]|-3}} is (,a)[b,c)[4,),a<b<c(-\infty, a) \cup [b, c) \cup [4, \infty), a < b < c, then the value of a + b + c is :

A

a = -3, b = -2, c = 3

B

a = -4, b = -2, c = 3

C

a = -3, b = -1, c = 3

D

a = -3, b = -2, c = 4

Answer

a = -3, b = -2, c = 3

Explanation

Solution

The function given is f(x)=[x]2[x]3f(x) = \sqrt{\frac{|[x]|-2}{|[x]|-3}}. For the function to be defined, two conditions must be met:

  1. The expression inside the square root must be non-negative: [x]2[x]30\frac{|[x]|-2}{|[x]|-3} \ge 0
  2. The denominator must not be zero: [x]30    [x]3|[x]|-3 \ne 0 \implies |[x]| \ne 3

Let y=[x]y = |[x]|. Since [x][x] is an integer, yy must be a non-negative integer. The inequality becomes: y2y30\frac{y-2}{y-3} \ge 0 This inequality holds if both the numerator and denominator are positive, or both are negative.

Case 1: y20y-2 \ge 0 and y3>0y-3 > 0 y2y \ge 2 and y>3y > 3. This implies y>3y > 3.

Case 2: y20y-2 \le 0 and y3<0y-3 < 0 y2y \le 2 and y<3y < 3. This implies y2y \le 2.

So, the condition on yy is y2y \le 2 or y>3y > 3. Substituting back y=[x]y = |[x]|, we get: [x]2or[x]>3|[x]| \le 2 \quad \text{or} \quad |[x]| > 3

Let's solve these conditions for [x][x]:

Condition 1: [x]2|[x]| \le 2 This means 2[x]2-2 \le [x] \le 2. Since [x][x] must be an integer, the possible values for [x][x] are -2, -1, 0, 1, 2.

  • If [x]=2[x] = -2, then 2x<1-2 \le x < -1.
  • If [x]=1[x] = -1, then 1x<0-1 \le x < 0.
  • If [x]=0[x] = 0, then 0x<10 \le x < 1.
  • If [x]=1[x] = 1, then 1x<21 \le x < 2.
  • If [x]=2[x] = 2, then 2x<32 \le x < 3. The union of these intervals is [2,3)[-2, 3).

Condition 2: [x]>3|[x]| > 3 This means [x]>3[x] > 3 or [x]<3[x] < -3.

  • If [x]>3[x] > 3: Since [x][x] is an integer, this means [x]4[x] \ge 4. If [x]=4[x] = 4, then 4x<54 \le x < 5. If [x]=5[x] = 5, then 5x<65 \le x < 6, and so on. This corresponds to the interval [4,)[4, \infty).
  • If [x]<3[x] < -3: Since [x][x] is an integer, this means [x]4[x] \le -4. If [x]=4[x] = -4, then 4x<3-4 \le x < -3. If [x]=5[x] = -5, then 5x<4-5 \le x < -4, and so on. This corresponds to the interval (,3)(-\infty, -3).

Combining the results from both conditions, the domain of f(x)f(x) is the union of these intervals: Domain = (,3)[2,3)[4,)(-\infty, -3) \cup [-2, 3) \cup [4, \infty).

The problem states that the domain is (,a)[b,c)[4,)(-\infty, a) \cup [b, c) \cup [4, \infty), with a<b<ca < b < c. Comparing our derived domain with the given format:

  • (,a)(-\infty, a) corresponds to (,3)(-\infty, -3), so a=3a = -3.
  • [b,c)[b, c) corresponds to [2,3)[-2, 3), so b=2b = -2 and c=3c = 3.
  • [4,)[4, \infty) matches the given interval.

We check the condition a<b<ca < b < c: 3<2<3-3 < -2 < 3. This condition is satisfied.

The question asks for the value of a+b+ca + b + c. a+b+c=(3)+(2)+3a + b + c = (-3) + (-2) + 3 a+b+c=5+3a + b + c = -5 + 3 a+b+c=2a + b + c = -2.