Question
Question: Let [x] denote an integer less than or equal to x. Then: \(\underset{x\to 0}{\mathop{\lim }}\,\df...
Let [x] denote an integer less than or equal to x. Then:
x→0limx2tan(πsin2x)+(∣x∣+(sin(x∣x∣))2)
(a) equals
(b) equals 0
(c) equals
(d) does not exist
Solution
We use the fact that we can evaluate limit Lfor real valued single variable function f(x) at any point x=a if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at x=a.We find left hand limit for given function x→0−limx2tan(πsin2x)+(∣x∣−sinx[x])2, right hand limit for given function x→0+limx2tan(πsin2x)+(∣x∣−sinx[x])2 and check whether they are equal.$$$$
Complete step by step answer:
We know that limiting value for any real valued single variable function f(x) when the variable x approaches to real number a in the domain f(x) is denoted by
x→alimf(x)=L
Here L is called the limit of the function.
The limit L exists for real valued single variable function f(x) at any point x=a if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at x=a. In symbols,