Solveeit Logo

Question

Question: Let X= \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\), D = \(\begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatri...

Let X= [xyz]\begin{bmatrix} x \\ y \\ z \end{bmatrix}, D = [3511]\begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}and A = [112211412]\begin{bmatrix} 1 & - 1 & - 2 \\ 2 & 1 & 1 \\ 4 & - 1 & - 2 \end{bmatrix}. If X = A–1 D, then X is equal to

A

[102]\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}

B

$\begin{bmatrix} 8/3 \

  • 1/3 \ 0 \end{bmatrix}$
C

$\begin{bmatrix}

  • 8/3 \ 1 \ 0 \end{bmatrix}$
D

$\begin{bmatrix} 8/3 \ 1/3 \

  • 1 \end{bmatrix}$
Answer

$\begin{bmatrix} 8/3 \

  • 1/3 \ 0 \end{bmatrix}$
Explanation

Solution

Since A = [112211412]\begin{bmatrix} 1 & - 1 & - 2 \\ 2 & 1 & 1 \\ 4 & - 1 & - 2 \end{bmatrix}

\ A–1 =13\frac { 1 } { 3 } $\begin{bmatrix}

  • 1 & 0 & 1 \ 8 & 6 & - 5 \
  • 6 & - 3 & 3 \end{bmatrix}$

A–1 D = 13\frac { 1 } { 3 } $\begin{bmatrix} 8 \

  • 1 \ 0 \end{bmatrix}$

Ž [xyz]\begin{bmatrix} x \\ y \\ z \end{bmatrix}= $\begin{bmatrix} 8/3 \

  • 1/3 \ 0 \end{bmatrix}$